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Abstract

A numerical study has been carried out for the two-dimensional laminar natural convection in a pitched roof of triangular cross-section

under summer day boundary conditions. Stream function-vorticity formulation was applied and control volume integration solution

technique is adopted in this study. Solutions are obtained up to Rayleigh number of 106. Steady-state solutions have been obtained for

height±base ratios of 0.125�L��1. The effects of height±base ratio and Rayleigh number on the ¯ow structure and heat transfer are

investigated. It has been found that a considerable proportion of the heat transfer across the base wall of the region takes place near the

intersection of the cold horizontal wall and hot inclined wall. The relationship between the mean Nusselt number, Nub, the Rayleigh

number, Ra, and the height±base ratio, L�, is such that for equivalent changes in Rayleigh number and height±base ratio, the in¯uence of

height±base ratio is the considerable higher factor. Comparisons with earlier works were also made. # 2000 Elsevier Science S.A. All

rights reserved.
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1. Introduction

Natural convection heat transfer and ¯uid ¯ow in enclosed

spaces has been studied extensively in recent years in

response to energy-related applications, such as thermal

insulation of buildings using air gaps, solar energy collec-

tors, furnaces and ®re control in buildings and so on. The

enclosures encountered in these applications are highly

diverse in their geometrical con®guration and the most

investigated enclosures include the annulus between hor-

izontal cylinders, the spherical annulus, the closed rectan-

gular cavity and the hollow horizontal cylinder. A great deal

of these works dealing with ¯ow and associated heat transfer

in enclosures are reported in the cited literature [1±6]. A

state of the art review of the most recent literature was given

by Fusegi and Hyun [7]. It concentrates on sidewall-heated

natural convection ¯ows in rectangular and/or square enclo-

sures. Other enclosures have been investigated to lesser

extend [8,9].

This paper pertains to the natural convection ¯ow in an

isosceles-triangular enclosure with a horizontal base and

heat input through the inclined walls. The work has been

motivated by the heat transfer as associated with air-con-

ditioning load calculations for pitched roofs with horizontal

suspended ceiling. Also relevant is the heat transfer problem

associated with roof-type solar still and various other engi-

neering structures. In spite of its obvious engineering impor-

tance, this problem has not been given the attention it

deserves and air conditioning calculations involving such

con®gurations have had to be based on published data on

pitched roofs with ceilings following the roof contours. The

present work aims at obtaining the various heat and ¯ow

parameters for such enclosures as described above. Results

are presented for the laminar-¯ow regime only with the

added simpli®cations that the temperature of the heat source

(the hypotenuse) is constant.

A schematic diagram of the physical situation is presented

in Fig. 1. The inclined (hypotenuse) and base walls are

maintained isothermal with tH>tC, tH being the inclined wall

temperature. These boundary conditions were resembles as

summer day boundary conditions where the outside tem-

perature is hot and inside temperature is sustained cold via

air conditioning. All the ¯uid properties are constant except

the density variation, which was determined according to the

Boussinesq approximation. Stream function-vorticity for-

mulation was applied. A control volume integration solution

technique is adopted and convective terms were approxi-
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mated by upwind differencing scheme and central differen-

cing were used for diffusive terms. Solutions are obtained up

to Rayleigh number of 106. Six different height±base ratios,

L�, namely 0.125, 0.25, 0.40, 0.60, 0.8 and 1.0 are con-

sidered. The effects of height±base ratio and Rayleigh

number on the ¯ow structure and heat transfer are investi-

gated.

2. Analysis and numerical method

Fig. 1 shows a schematic diagram of the physical system

to be investigated. The roof is ®lled with a viscous, incom-

pressible Newtonian ¯uid. The inclined and the base walls

are kept at constant temperatures tH and tC respectively

with tH>tC The governing equations for two-dimensional,

laminar, incompressible buoyancy-induced ¯ows with

Boussinesq approximation and constant ¯uid properties

in non-dimensional stream function vorticity form are:
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Eqs. (1)±(3) are the non-dimensional temperature, vorticity

and stream function equations, respectively.

2.1. The non-dimensional boundary conditions

On the horizontal (bottom) wall

c � 0; owall � ÿ@
2c

@n2
; T � 0:

On the inclined walls

c � 0; owall � ÿ@
2c

@n2
; T � 1;

where owall is the value of the vorticity at wall and n is the

outward drawn normal of the surface. Corner point vorticity

values were updated as averages of the two adjacent wall

node vorticity values. These boundary conditions were used

to update related values on all boundaries of the triangle as

the steady-state solutions were numerically approached. The

discontinuity in temperature at the intersection of the

inclined and base walls was handled by assuming the

average temperature of the two walls at the corner and

keeping the adjacent nodes with the respective wall tem-

peratures. The inclined boundary (hypotenuse) was approxi-

mated staircase-like zigzag lines. Although the solution was

computed on the approximated geometry, the resulting error

in the solution Ð for moderately fine grid Ð is usually

surprisingly small.

2.2. Nusselt numbers

The energy transported across the horizontal wall is

expressed in terms of local and mean Nusselt numbers.

The local Nusselt numbers for the horizontal wall can be

Nomenclature

h height of the roof (m)

b half length of horizontal base wall (m)

L� height±base ratio, height of roof scaled by

half-length of base wall, h/b

tC cold wall temperature,(K)

tH hot wall temperature (K)

T dimensionless temperature, (tÿtC)/(tHÿtC)

Pr Prandtl number

Ra Rayleigh number

Nux local Nusselt number

Nub mean Nusselt number

Greek symbols

o non-dimensional vorticity

c non-dimensional stream function

Subscripts

C cold wall

H hot wall

Fig. 1. Geometry of the pitched roof under summer day boundary

conditions.
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obtained from gradients of temperatures from the following

relationship:

Nux � @T

@y

����
y�0

(4)

and mean Nusselt number,

Nub � 1

b

Z b

0

@T

@y

����
y�0

dx: (5)

The integration of Eq. (5) was performed using the Trape-

zoidal rule.

The energy transport, vorticity transport and stream func-

tion equations together with boundary conditions describe

the problem under consideration. In this study, vorticity

transport and energy transport equations were solved by

employing the alternating direction implicit method (ADI)

®nite difference technique [10], while the stream function

equation was solved by employing the Gaussian successive

over-relaxation (SOR) technique [11]. Convective terms

were approximated by upwind differencing scheme and

central differencing were used for diffusive terms.

To check the validity of the numerical results, test calcu-

lations were performed for the following values of the

controlling parameters: Pr�0.7, Ra�100. Quantitatively,

the program was veri®ed by a comparison with an experi-

mental work performed by El Sherbiny et al. [12], who

developed empirical Nusselt number equations for an

aspect ratio of 5.0 and a tilt angle of 608. The results were

also veri®ed by comparison with the numerical results of

Asan [13]. Grid independent study was performed and a

uniform grid system of 51�51 was chosen for the calcula-

tion of all cases in this study. Solutions were assumed to

converge when the following convergence criteria was

satis®ed for every variable at every point in the solution

domain

fnew ÿ fold

fnew

���� ���� � 10ÿ4 (6)

where f represents c, o and T.

3. Results and discussion

In this study, calculations were carried out for height±base

ratios of 0.125, 0.25, 0.40, 0.60, 0.80, 1.0 and Prandtl

number of 0.7. Rayleigh numbers were varied from the

conduction dominated mode into the laminar free convec-

tion region(1�103±1�106). The in¯uence of Rayleigh num-

ber and height±base ratio, L�, on the ¯ow ®eld and heat

transfer is considered ®rst. The average Nusselt numbers are

then discussed.

3.1. Flow and isotherm patterns

Fig. 2 represents a series of streamline and isotherm

con®gurations for dimension ratios of 0.25, 0.40, 0.60,

0.80 and 1.0, Prandtl number of 0.7, and Rayleigh numbers

of 103, 104, 105 and 106. To save space, streamline results are

presented on the left half of the triangle and the isotherms are

presented in the right half of the triangle. These series of

results are designed to show the individual in¯uence of the

Fig. 2. Streamlines and isotherms for different height±base ratios and Ra numbers.
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Rayleigh number and height±base ratio on the ¯ow ®eld and

heat transfer.

Since the results for all height±base ratios are similar, only

the results for L��1.0 will be discussed (L��1.0,

1�103�Ra�1�106). The ¯uid in the bottom portion of

the enclosure is relatively stagnant and stays colder. So,

the ¯uid in the close vicinity of the bottom wall has a higher

density than that near the inclined hot wall. Thus, the ¯uid

near the surface of the inclined wall moves upward while the

relatively heavy ¯uid near the line of symmetry moves

downward. As the ¯uid moves downward, it loses energy

and eventually forces the separation of the thermal boundary

layer along the inclined wall. The heavy ¯uid then enters the

thermal boundary layer of the bottom wall and completes the

re-circulation pattern. As it seen from Fig. 2, for small

Rayleigh numbers, two counter rotating vortices (the right

one is not shown) are present in the enclosure and the eye of

the vortices is located at center of the half of the cross-

section (Ra�1�103). As the Rayleigh number is increased,

the eye of the vortex slightly moves towards to the inclined

wall of the roof (Ra�1�104). This increase in Rayleigh

number causes more strong cross-sectional ¯ows. Further

increase in the Rayleigh number (Ra�1�105) causes sec-

ondary vortexes to develop on the horizontal wall near to the

line of symmetry. The newly developed secondary vortexes

pushes the eye of the primary vortexes further towards to the

inclined wall as it seen from Fig. 2 (Ra�1�105, L��1.0).

Increasing the Rayleigh number beyond 105 causes the

secondary vortexes to get bigger and primary vortexes to

get smaller, as it seen from Fig. 2 (Ra�1�106, L��1.0). The

transition from two-vortex solution to multiple vortex solu-

tion is Rayleigh number and height±base ratio dependent. As

height±base ratio gets smaller, the transition to multiple

vortex solution takes place at higher Rayleigh numbers

(Fig. 2, L�<1.0, 1�103�Ra�1�106).

The results of temperature ®eld are shown in the right half

of the triangle in Fig. 2. Here isotherms represent the lines

with equal intervals between zero (cold base wall) and unity

(hot inclined wall). As it seen from Fig. 2, the isotherms

emerge normally from the adiabatic wall (line of symmetry)

towards the intersection of the inclined wall and the hor-

izontal bottom wall. For small Rayleigh numbers (104�Ra),

the temperature distribution is almost the same as in the pure

conduction case. However, for Ra>104, the natural convec-

tion effect is dominant instead of conduction and a tem-

perature inversion appears in the enclosure. As an example,

for Ra�1�105 and L��1.0, the effect of the multiple cell

solution extends into the region of the enclosure near central

region. The isotherms are pushed towards the hot inclined

wall for approximately the ®rst quarter of the width of the

enclosure near to the corner (Ra�1�106, L��1). On the

other hand, the isotherms are pushed downward towards the

cold wall near to the line of symmetry. The sudden depres-

sion of the near-middle sections of the isotherms indicated

the possibility of separation occurring in the primary ¯ow

around these sections.

3.2. Local and mean Nusselt numbers

As an example, the local Nusselt number variation across

the horizontal bottom wall for height±base ratio of 0.25 and

Rayleigh number of 2772 is shown in Fig. 3. As it seen from

®gure, the local Nusselt number increases to de®nite value at

Fig. 3. Local Nusselt number vs. x on the horizontal bottom wall.

Fig. 4. Mean Nusselt number vs. height±base ratio for different Rayleigh

numbers.
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the intersection of cold bottom wall and hot inclined wall.

The high values of Nusselt number near the intersection give

an indication that a given region within the neighborhood of

this intersection accounts for more than a proportionate

amount of heat transported across the base wall. Here the

comparison with earlier work of Akinsete and Coleman [9]

was also made and as it seen the results of present study

matches pretty well with earlier results.

The variation of the mean Nusselt number, Nub, with

height±base ratio, L�, is shown in Fig. 4. For a given

Rayleigh number, increasing the height±base ratio gives

rise to sharp drops in the amount of heat transported across

the bottom wall of the roof. This results is to be expected

because most of the heat transfer across the base wall occurs

near the intersection between bottom and inclined walls. So,

for a given Rayleigh number, the higher the height±base

ratio, the less the heat transfer across the base wall.

The variation of the mean Nusselt number, Nub, with

Rayleigh number is shown in Fig. 5. As it is seen from ®gure,

Nub changes very slightly over most of the ranges of Rayleigh

numbers considered. It is noticed that these changes are more

pronounced for higher height±base ratios than lower ratios.

4. Conclusions

This paper has reported numerical results for steady,

laminar, two-dimensional natural convection in a pitched

roof of triangular cross-section under summer day boundary

conditions. The results presented show that height±base

ratio has a profound in¯uence on the temperature and ¯ow

®eld. On the other hand, the effect of Rayleigh number is not

signi®cant for L�<1 and Ra<105 (Fig. 5). For small Rayleigh

numbers, two counter rotating vortices are present in the

enclosure and the eye of the vortices is located at center of

the half of the cross-section. As the Rayleigh number is

increased, the eye of the vortex moves towards to the hot

inclined wall. Further increase in the Rayleigh number

causes secondary vortexes to develop on the horizontal wall

near to the line of symmetry. The newly developed second-

ary vortexes pushes the eye of the primary vortexes further

towards to the inclined wall. The transition from two-vortex

solution to multiple vortex solution is Rayleigh number and

height±base ratio dependent. As height±base ratio gets

smaller, the transition to multiple vortex solution takes place

at higher Rayleigh numbers. It has been found that a

considerable proportion of the heat transfer across the base

wall of the region takes place near the intersection of the

cold horizontal wall and hot inclined wall. The relationship

between the mean Nusselt number, Nub, the Rayleigh number,

Ra, and the height±base ratio, L�, is such that for equivalent

changes in Rayleigh number and height±base ratio, the in¯u-

ence of height±base ratio is the considerable higher factor.
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