

Systems Leadership

with emphasis on academic environments

KC Ting (丁冠中), Ph.D., P.E.
Professor and Head
Department of Agricultural and Biological Engineering
University of Illinois
Urbana-Champaign, Illinois
USA

kcting@illinois.edu

Leaders lead systems... Systems thinking informs leadership

K.C. Ting's Select Leadership Experience "Empower with knowledge and wisdom (kW) for Life."

Academic/Professional

- ☐ Department head/chair at University of Illinois, The Ohio State University, Rutgers University, and University of Houston
- □ Chair of Stewarding Excellence@Illinois Project Team to review Beckman Institute and Institute for Genomic Biology at University of Illinois
- Member or chair of nine external review teams to evaluate academic and research programs in U.S., Japan, China, Taiwan, and Malaysia.
- ☐ Chair of ASABE ED-210, SE-30, SE-303, IET-218

Research

- □ Leader of Energy Biosciences Institute Program on Engineering Solutions for Biomass Feedstock Production, University of Illinois
- Member of Steering Committee for ADM Institute for the Prevention of Post-harvest Loss, University of Illinois
- □ Leader of NJ-NASA Specialized Center of Research and Training Systems Analysis and Modeling Team, Rutgers University
- □ Editor-in-Chief, Computers and Electronics in Agriculture
- Editor, Information and Electrical Technologies Division, ASABE

Leadership Development

- NASULGC Food Systems Leadership Institute Fellow
- **□** ESCOP/ACOP/USDA Leadership Development Program
- ☐ The University System, Institute of Higher Education Management, Management Workshop for Academic Department and Division Heads

Leadership Awards

- □ 2008 American Society of Agricultural and Biological Engineers (ASABE) Kishida International Award
- **☐** 2011 ASABE James R. and Karen A. Gilley Academic Leadership Award

ASABE Gilley Academic Leadership Award (2011)

K.C. Ting , Ph.D., P.E. Professor and Head a. University of Illinois

Contents

- I. Introduction
- **II. Academic Profession**
 - III. Leadership
 - IV. Systems Approach
- V. Systems Leadership

Contents

I. Introduction

"Information is processed data. Knowledge is internalized information. Wisdom is effective use of knowledge. Knowledge is energy. Combined knowledge and wisdom (kW) is power."

- I 1. Leadership Development
- I-2. Things Worthy of Attention

I – 1. Leadership Development (1)

- □ Proactive communication leads to well-informed colleagues.
 □ Well-informed colleagues are an invaluable stren
- Well-informed colleagues are an invaluable strength of an organization.
- ☐ A key responsibility of leaders and administrators is providing value-added visions and making decisions.
- ☐ In an organization, how the decisions are made is equally important as what the decisions are.
- ☐ It has become increasingly important to have, as well as to be able to develop, people who can both lead and administrate.
- ☐ It is very important to make fostering leadership and administrative skills one of the top priorities.

I – 1. Leadership Development (2)

- ☐ Effectiveness of a leader can be best judged by how productive his/her team members (both individually and as a team) are.
- ☐ Leadership works at its best when it enables the highest possible productivity of a team.
- ☐ The definition of productivity should be developed by participation of the team members and the clientele.
- ☐ The measure of effectiveness is a continuous process and a functional feed-back mechanism is essential for achieving and maintaining high levels of effectiveness.
- ☐ The first priority of the leadership is human resource development including planning, recruiting, enabling, empowering, coordinating, mentoring, and supporting.

I-2. Things Worthy of Attention

□Quality work □Be responsive ☐ Meet the deadlines □Think globally, do locally **□** Honesty □ Integrity ☐ Team work (lead, follow, support, cheer, and celebrate) ☐ Be part of the solution **□** Collegiality □Interpersonal skills **□**Be patient **□**Strategic framing

Contents

II. Academic Profession

"We are in the business to "empower human capacity with knowledge and wisdom (kW)" - a great business to be in."

- II 1. Academic Infrastructure
- II 2. Academic Departments
- II 3. Academic Responsibilities
- II 4. Performance Evaluation
- II 5. Institutional Culture
- II 6. Collegiality
- II 7. Professional Network
- II 8. Diversity
- II 9. Resource Generation and Utilization
- II 10. Faculty Issues vs. Administration Issues
- II 11. Getting Started and Professional Development

II – 1. Academic Infrastructure

- **□** University
- **☐** College
- **□** Department
- ☐ Program

- ☐ School
- **☐** Institute
- **☐** Division
- □ Section
- ☐ Unit
- ☐ Group
- **□** Center
- ☐ Office
- ☐ Etc.

II – 2. Academic Departments (1)

Administrative units which provide a disciplineoriented home base for faculty, staff, and students to develop, coordinate, manage, implement, evaluate, and modify teaching, research, and outreach programs.

Resources - human, facility, financial, information, time, infrastructure, department by-laws, pattern of administration, etc.

II – 2. Academic Departments (2)

- □ Processes teaching, research, extension and outreach programs; administrative, service, and operational functions; academic, professional and social activities, etc.
- Deliverables a learning organization; educated and trained professionals; generated and disseminated information; technical and professional services; development of discipline-oriented expertise; contribution to multiple-disciplinary programs; etc.

II – 3. Academic Responsibilities

□ Teaching

(Credit-Generating Instruction; Outreach/Extension Education)

Research(Discovery; Synthesis; Integration; Implementation)

□ Service

(Academic; Administrative; Professional; Public; Community; Economic Development)

II – 4. Performance Evaluation

Criteria (Things that are valued)

- ☐ High quality professional work
- Relevance to the goals of the Department, College, and University
- ☐ Impact of program efforts
- Diversity of scholarly responsibilities and contributions
- ☐ Recognition for research, teaching, and service efforts
- Disciplinary and multidisciplinary efforts
- ☐ Individual and team contributions
- Peer-review both as validation of accomplishment and as a contribution to development of others

Source: College of Food, Agricultural, and Environmental

Sciences, Ohio State, Faculty Review System Guidelines 2/8/2000

Performance Matrix

II – 5. Institutional Culture

The way things are interpreted and done, as well as how people behave

■ Values aspect –

Beliefs, Purposes

☐ Rational aspect –

Structures, Systems

□ People aspect –

Attitudes, Behaviors

II – 6. Collegiality

Professional relationships and interpersonal skills at work place

- □ Short term relationship
 □ Long term relationship
 □ Understand generally accepted behavior and practices
 □ Expand complementary interests
 □ Inter-disciplinary activities
 □ Committees and task forces
 □ Mitigate conflicting goals (manage differences constructively)
- constructively)

 The importance of communication
- ☐ The last resort

II – 7. Professional Network

- □ Establish collaboration
- ☐ Broaden views
- ☐ Keep informed
- ☐ Gain access
- ☐ Gather support
- **☐** Share opportunities
- ☐ Contribute to the larger scope
- ☐ Conduct a reality check
- **☐** Build friendships

II – 8. Diversity

- ☐ Is a strength
- ☐ Is how the world is made up naturally
- ☐ Is a pleasant experience
- ☐ Is a policy and legal issue
- ☐ Is a learnable concept and skill
- Needs a broad and comprehensive definition
- □ Requires full understanding and attention
- **□** Deserves continuous effort

II – 9. Resource Generation and Utilization

Time	
Energy (individual, group)	
Human (office and technical staff, students, mentors, peers, friends, family)	
Financial (allocated, targeted, competitive, g	ifts)
Physical/Facility	
Informational	
Organizational	
Industry and Corporation	
Political (public, communities, governments, and organizations)	•

II – 10. Faculty Issues vs. Administration Issues

- **□** Faculty Input
- **☐** Faculty Participation
- □ Faculty Advisory
- ☐ Faculty Initiatives
- **□** Faculty Resolution
- **☐** Faculty Governance
- **☐** Faculty Committee
- ☐ Faculty Meeting

- Resource Allocation
- ☐ Resource Management
- ☐ Policy, Procedure, and Rule Enforcement
- ☐ Unit Representation
- ☐ Faculty/Staff
 Coordination

Information Source: Unit By-laws

II - 11. Getting Started and Professional Development (1)

- ☐ Start as early as you can
- ☐ Become familiar with faculty responsibilities, rights, and, career advancement issues
- ☐ Get on all key e-mail distribution lists
- Meet all key colleagues as soon as possible (networking on and outside campus)
- ☐ Keep the big dreams and assess the reality (strategic plan)
- ☐ Work closely with your mentors

II – 11. Getting Started and Professional Development (2)

- □ Remember the importance of professionalism and life-long learning
- Learn how to manage time and balance work and personal life
- ☐ Learn how to be a good researcher, teacher, and committee member/leader
- ☐ Learn how to advise, supervise, and mentor graduate students and post-docs
- ☐ Learn how to utilize resources and ask good questions

To faculty members: Although many colleagues will try to "protect" you, and be very interested in your success as a faculty member, you are ultimately responsible for your own career development

Contents

III. Leadership

"Leaders must enable themselves and others to lead."

- III 1. Think Systems
- III 2. Pay Attention to Details
- III 3. Make Things Happen
- III 4. Get Things Done
- III 5. Enable People to Succeed
- III 6. Lead, Follow, Support, Cheer, and Celebrate

III – 1. Think Systems (1)

- □ Problems and issues, that are worth a leader's effort to solve and resolve, are those without obvious solutions.
- ☐ An effective way of analyzing problems and formulating solutions is *systems approach*.
- ☐ Systems thinking facilitates big-picture views
- □ A system consists of interacting components integrated to achieve certain goals (normally under certain constraints). A component may be anything definable and describable. An interaction may be governed by mathematical, logical, functional, social, regulatory, political, and heuristic relationship.

III – 1. Think Systems (2)

- □Components and systems are relative terms; i.e. a system may be a component of a larger system and a component may be a system of smaller components.
- ☐ Systems thinking promotes diversity and inclusiveness.
- ☐ Systems thinking avoids local improvement and optimum that weakens the overall system
- ☐ Systems thinking is a learnable skill

III – 2. Pay Attention to Details

☐"Devil is in the details" ☐ Avoid "vacuum" behind big ideas ☐ Communicate expectations clearly ☐ Delegate and follow up ☐ Most "negative" feedback is about lack of attention to details ☐ Mapping "details" to system level issues and vice versa ☐ Good staff support is invaluable ☐ The 80-20 rule does happen: 80% of effort for 20% of details ☐ Every team needs at least one detail person

III – 3. Make Things Happen (1)

- ☐ Leadership is essential in charting directions and managing changes
- ☐ Leaders deal with problems without obvious solutions
- ☐ The benefit of being surrounded by best people
- **□** Consolidation of ideas
- **□** Conflict resolution
- ☐ Persuasion, motivation, and consensus building
- ☐ The power of the "first draft"
- ☐ The power of intent

III – 3. Make Things Happen (2)

□ 9 Rs of "strategic intent" development

- Reasons
- Roadmap
- Responsibilities
- Roles
- Rules
- Results
- Resources
- Renewed
- Renowned

III – 3. Make Things Happen (3)

- ☐ The eight-stage process of creating major change (by John P. Kotter, *Leading Change*, Harvard Business School Press, 1996, 187p)
- 1. Establishing a sense of urgency
- 2. Creating the guiding coalition
- 3. Developing a vision and strategy
- 4. Communicating the change vision
- 5. Empowering broad-based action
- 6. Generating short-term wins
- 7. Consolidating gains and producing more change
- 8. Anchoring new approaches in the culture

III – 4. Get Things Done (1)

- ☐ Leaders are very skillful at multitasking and parallel processing
- Leaders deliver high quality results in a timely fashion
- ☐ The art of delegation
- ☐ Mobilize taskforces with clear expectations
- ☐ Allocate resources towards strategic goals and tasks
- □ A case of strategic change following John Kotter's eight-step process

III – 4. Get Things Done (2) A case study (1)

Changes Needed –

Disciplinary Change: "Agricultural	Engineerin
to "Agr. and/or Bio. Engineering"	
Enrollment increase	
Curricula revision	
Funding model change	

Organization change

Faculty development

III – 4. Get Things Done (3) A case study (2)

Step 1. Urgency – Factors and Environments Influencing the Change: (1)

- ☐ Clientele and stakeholders
- Market place and industries
- □ Land Grant missions and government policies
- ☐ Accreditation requirements for undergraduate engineering programs
- □ Professional engineering licensing

III – 4. Get Things Done (4) A case study (3)

Step 1. Urgency – Factors and Environments Influencing the Change (2):

- ☐ University and College strategic plans
- Accountability and reward systems
- ☐ Resource availability and funding decisions
- ☐ Centralized decision-making versus grass root empowerment
- ☐ Curriculum and faculty development

III – 4. Get Things Done (5) A case study (4)

Step 2. Guiding Coalition –

- ☐ Administrative Committee (Section Leaders and Assistant to the Head)
- ☐ Department Faculty Advisory Committee (elected by faculty)
- ☐ Taskforce leaders (most are the members of the above committees)

III – 4. Get Things Done (6) A case study (5)

Step 3. Vision and Strategy (1) – Outcome of a 9 month long strategic planning process including SWOT, retreat, etc.

(1) Vision: "We will be the best agricultural and biological engineering department in teaching, research, and outreach, while integrating biology and engineering and maintaining a collegial environment that emphasizes professional and personal development."

III – 4. Get Things Done (7) A case study (6)

Step 3. Vision and Strategy (2) – Outcome of a 9 month long strategic planning process including SWOT, retreat, etc.

(2) Mission: "We integrate life and engineering for enhancement of complex living systems by providing student-centered educational experiences in engineering and systems management, by conducting high impact research, and by delivering value-added information, knowledge, and wisdom."

III – 4. Get Things Done (8) A case study (7)

Step 3. Vision and Strategy (3) – Outcome of a 9 month long strategic planning process including SWOT, retreat, etc.

(3) Core Values: "We are in the business of empowering human capacity with knowledge and wisdom. In everything we do, we value

- Excellence
- Integrity and Ethics
- Creativity and Innovation
- Science-Based Scholarship
- Inclusiveness and Collegiality

III – 4. Get Things Done (9)

A case study (8)

Step 3. Vision and Strategy (4) – Outcome of a 9 month long strategic planning process including SWOT, retreat, etc.

(4) Goals:

Goal 1: Enhance Student Recruitment and Retention

Goal 2: Integrate and Enhance Curricula

Goal 3: Increase Resources

Goal 4: Design Organization to Advance Strategic Thrusts

Goal 5: Strengthen Faculty Capacity

III – 4. Get Things Done (10)

A case study (9)

Step 3. Vision and Strategy (5) – Outcome of a 9 month long strategic planning process including SWOT, retreat, etc.

(5) Technical Initiatives

Initiative 1: Agricultural Automation

Initiative 2: Bio-Energy and Bio-Products

Initiative 3: Sustainable Environment

Initiative 4: Biological Engineering

Initiative 5: Systems Informatics and Analysis

III – 4. Get Things Done (11) A case study (10)

Step 4. Communicating Vision –

Departmental Monday lunch meetings
Departmental faculty meetings
Department Administrative Committee meetings (once per month)
Department Faculty Advisory Committee meetings (once every two months)
State of the Department presentations (once every semester)
Department External Advisory Committee meetings (once per
year)
Department annual reports to the College
Faculty annual review conversations
Email communications
Posting of Strategic Plan on the Departmental website

III – 4. Get Things Done (12) A case study (11)

Step 5. Empowerment –

Five task forces were established for the five strategic goals.
Each task force is lead by one faculty member.
All faculty, staff, graduate students, and external advisors
were invited to serve as task force members by their
choices.
Each person may participate in multiple task forces.
The charge to the task forces was to develop a set of
indicators of success and a list of actions.

III – 4. Get Things Done (13)

A case study (12)

Step 6. Short Term Wins (1) – The Department took a simultaneous planning and implementation approach. Several "wins" were the result of this process:

- □ Received recognition as the number 1 agricultural engineering undergraduate program ranked by the U.S. News and World Report
- □ Appointed a half-time academic program coordinator for undergraduate student recruitment, placement etc.
- □ Identified domains and core competencies for agricultural and biological engineering (as well as technical systems management)

III – 4. Get Things Done (14) A case study (13)

U of I Agricultural and Biological Engineering

Domains

Bio-Based Processing and Production Systems;

Biomass and Renewable Energy;

Precision and Information Agriculture;

Agricultural and Biosystems Management;

Agricultural Safety and Health;

Food Quality and Safety;

Environmental Stewardship;

Land and Water Resources;

Spatially Distributed Systems;

Structure and Facilities for Living Systems;

Indoor Environmental Control;

Bio-sensors, Bio-instrumentation, Bio-informatics, and Bio-nanotechnology;

Intelligent Machinery Systems;

Automation of Biological Systems;

Advanced Life Support Systems.

III – 4. Get Things Done (15) A case study (14)

Automation-Culture-Environment-Systems (ACESys)

Core Competencies for Agricultural and Biological Engineering

III – 4. Get Things Done (16)

A case study (15)

Step 6. Short Term Wins (2) – The Department took a simultaneous planning and implementation approach. Several "wins" were the result of this process:

- □ Reached a decision to change the degree name from Agricultural Engineering to Agricultural and Biological Engineering
- ☐ Initiated a curriculum revision based on the domains and core competencies
- ☐ Increased success of grant proposals
- ☐ Participated in a BP funded Energy Biosciences
 Institute
- Developed a concept of encouraging multiple engagements in Sections, Domains, and Core Competencies
- ☐ Used the Provost's Targets of Opportunity to add faculty members to the department

III – 4. Get Things Done (17) A case study (16)

Step 7. Integration of Gains for Further Success –

- ☐ The systematic approach in identifying the "must win" strategic goals enabled the short term wins to become an integral part of advancing the departmental overall goals.
- ☐ The strategic actions recommended by the task forces further validated the urgency of top priorities.

III – 4. Get Things Done (18) A case study (17)

Step 8. Anchoring New Approaches in the Culture -

- Most results of the strategic plan implementation process involve fundamental, conceptual, and methodological changes.
- ☐ It is expected that the new approaches and the willingness to explore new approaches will continue to be part of the continuous improvement effort.

III – 5. Enable People to Succeed

☐ Recognize talents ☐ Help set goals ☐ Provide mentoring and role models ☐ Help with networking opportunities ☐ Provide enabling work environment and resources ☐ Provide leadership and succession opportunities ☐ Provide professional development opportunities ☐ Recognize achievements

III – 6. Lead, Follow, Support, Cheer, and Celebrate

- ☐ Leaders must lead
- Leaders know the importance of team work
- ☐ Leaders pay attention to cultivate future leaders
- ☐ Leaders provide leadership opportunities to others
- ☐ Leaders promote graceful effectiveness
- ☐ Leaders share credits

Contents

IV. Systems Approach

"Problem analysis and solving skills are a fundamental core competency of leadership intelligence."

IV – 1. System

IV – 2. Systems Thinking

IV – 3. Systems Analysis Steps

IV – 1. System

- □ A group of interrelated components integrated to function/behave in certain ways and/or serve certain purposes (normally under certain constraints and/or external influences).
- "System" and "component" are relative terms; i.e. a system may be a component of a larger system and a component may be a system of smaller components.

Example:

An academic unit as a system – Faculty, Staff, Students, Degree and Research Programs, Offices, Laboratories, Equipment, Department By-laws, Administrative Structure, etc.

IV – 2. Systems Thinking

What: A Holistic Approach emphasizing the performance as a whole based on the understanding of all components in the system and the interrelationships among the components [i.e. making things work better, as well as making things work together].

Why:

- ☐ Individually functioning components do not necessarily make up a workable system;
- □ Piece-wise knowledge about individual components does not automatically provide a complete understanding of the overall system;
- □ Necessary yet missing components can be detected after observing/analyzing the system as a whole

- 1. Define System's Scope and Objectives
- 2. Identify System Constraints
- 3. Establish Indicators of Success
- 4. Conduct System Abstraction
- 5. Obtain Data and Information
- 6. Handle Uncertainty and Incomplete Information
- 7. Incorporate Heuristic and Fuzzy Reasoning
- 8. Develop System Model
- 9. Verify and Validate Model
- 10. Investigate What-Ifs
- 11. Draw Conclusions
- 12. Plan and Execute Actions
- 13. Communicate Outcomes
- 14. Continuous Monitoring and Improvement

- 1. Define System's Scope and Objectives
- Set system boundaries for the purpose of analysis
- Specify required system functions
- Describe relevant system considerations
- State systems level issues and questions
- Etc.

- 2. Identify System Constraints
- Resource limitations
- Social acceptance
- Regulatory policies
- Etc.

3. Establish Indicators of Success

- Minimum cost
- Maximum return on investment
- Maximum efficiency
- Minimum undesirable consequences
- Maximum social acceptance
- Etc.

4. Conduct System Abstraction

- Components and Descriptors
- Interrelationships and Interactions
- Initial Conditions (Current Situations)
- Boundary Conditions (External Factors)
- Etc.

- 5. Obtain Data and Information
- Identify data needs and sources
- Establish data protocols
- Etc.

- 6. Handle Uncertainty and Incomplete Information
- Stochastic simulation
- Heuristic reasoning (e.g. expert systems)
- Fuzzy logic
- Gap analysis
- Etc.

- 7. Incorporate Heuristic and Fuzzy Reasoning
- Consult with experts
- Obtain input from diverse view points
- Practice experiential learning
- Etc.

- 8. Develop System Model
- Quantification of information and/or processes
- Mathematical and/or logical correlation of data
- Representation of real systems
- Creation of tools to enable description and/or application of concepts and ideas
- Etc.

- 9. Verify and Validate Model
- Ensure the model performs computationally as designed
- Evaluate the closeness of the model output to the reality
- Etc.

10. Investigate What-Ifs

- Scenario simulation (investigate "what if?")
- Optimization (best available solution)
- Etc.

IV – 3. Systems Analysis Steps (12)

11. Draw Conclusions

- Technical workability & reliability
- Resource requirements
- Environmental impact
- Economic viability
- Etc.

12. Plan and Execute Actions

- The power of strategic intent
- Balance planning and actions
- Short-term success vs. long-term goals
- Effective task forces
- Etc.

13. Communicate Outcomes

- Provide decision support
- Support system planning
- Facilitate system management
- Enable system operation, monitoring, and control
- Etc.

IV – 3. Systems Analysis Steps (15)

- 14. Continuous Monitoring and Improvement
- Identify metrics for performance measurement
- ☐ Establish feed-back loops for "calculated" changes
- **☐** Understand the effect of changes
- ☐ Etc.

Contents

V. Systems Leadership

"Systems methodology and leadership ability are a powerful combination of skill sets for leaders."

- V − 1. Feedback and Feedforward Change Loop
- **V 2.** Formulate Decision Support
- V-3. Strategic Framing
- **V 4.** Concurrent Analysis
- V-5. Make Decisions
- **V 6.** Facilitate Simultaneous Planning and Implementation
- **V 7.** Balance Analysis and Actions
- **V 8.** Promote Graceful Effectiveness
- **V 9.** Build Knowledge and Wisdom
- V − 10. Empower with Knowledge and Wisdom (kW)

Feedback/Feedforward Change Loop

V − 1. Feedback and Feedforward Change Loop SysLead

V – 2. Formulate Decision Support

☐ Define the scope of the problem ☐ Formulate required analyses and/or solutions ☐ Connect the problem at hand to bigger pictures (i.e. the global impact of local solutions) □ Determine information needs ☐ Identify sources of information and methods for information gathering ☐ Ask good questions ☐ Follow "science based" methodologies in data/information analysis ☐ Communicate the proper use of the outcome of analysis ☐ Be mindful of the "power of the first draft"

- ☐ Develop a statement containing a strategic foundation:
- Purpose (Vision and Mission)
 What do you aspire to be? What do you do best for whom?
- <u>Core Values (Principles)</u>
 What do you stand for? What are fundamentally and deeply held?
- Overarching Goal (Intentions)
 What are the long-term (qualitative) accomplishments that you are committed to achieve?

V-3. Strategic Framing (2)

- ☐ As well as strategic actions in the forms of:
- <u>Indicators of Success</u>
 What are the specific descriptions that make the overarching goals tangible?
- Experiments (also known as Action Plans)
 What tactics will you take in order to achieve the overarching goal.

A tactic includes a specific action, the person who is responsible for the action, and the time to complete.

V-3. Strategic Framing (3)

☐ Related Issues:

- Players (parties that you are interacting with)
- Context (relationships between the players and you)
- Domains (strategic focus areas)

V-3. Strategic Framing (4)

Strategic visioning and planning procedures (1):

- ☐ Prepare for a brainstorming session
- Determine when and where
- Select participants (facilitator, support staff, integration leaders, discussion leaders, discussants)
- Perform SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis
- Distribute the result of SWOT analysis
- Formulate and distribute agenda
- Arrange logistics (meeting rooms, audio/visual equipment, name tags, refreshments, lunches, etc.)

Strategic visioning and planning procedures (2):

- ☐ Conduct brainstorming sessions
- ☐ Summarize information gathered during the brainstorming session
- ☐ Prepare a draft report
- □ Review and revise the draft report with the organization administrative committee

V – 3. Strategic Framing (6)

Strategic visioning and planning procedures (3):

- □ Distribute the draft report to the members of the organization and request input
- ☐ Finalize the draft report into a strategic intent/plan by considering the input
- ☐ Prepare and distribute various versions of the strategic intent/plan
- ☐ Implement the strategic intent/plan
- ☐ Monitor, evaluate, and modify the strategic intent

V – 4. Concurrent Analysis (1)

- ☐ Integrate information, knowledge, and wisdom related to the problem from various sources in a real-time fashion
- □ Perform concurrent analysis (including simulation and optimization)
- **☐** Evaluate systems level solutions
- ☐ Deliver the results of analysis based on the most current situation, also in a real-time fashion

V – 4. Concurrent Analysis (2)

Concurrent Analysis Platform (CAP)

for Systematic Problem Solving

V-5. Make Decisions (1)

Concurrent Analysis Platform for Information, Knowledge, and Wisdom empowered Problem Solving

Informatics Modeling and Analysis Decision Support System Concept diagrams Web-based decision Simulation and of the systems optimization model support system under study Integration with Agent-based model Database design Model application and models, databases, Standard data and user interfaces analysis processing tools

V-5. Make Decisions (2)

Decision making is one of the most important responsibilities of a leader. ☐ Perceived or real inability of a leader to make decisions is a major cause of frustration for his/her team members. ☐ High quality decision support is invaluable in decision making. ☐ A sound "philosophical" backing help maintain the consistency and transparency of decisions. ☐ The processes used to derive decisions are often times as important (if not more than) as the decisions themselves.

V-5. Make Decisions (3)

- ☐ Negotiation, conflict resolution, crucial conversation, and consensus building skills are frequently needed.
- ☐ Efforts should be made to avoid any local optimum that causes system level problems and/or unexpected consequences.
- ☐ Leaders should not be satisfied with only workable solutions and should strive for "optimum" solutions.
- ☐ Ideally, any decision should not prevent a leader from making good decisions in the future.

V – 6. Facilitate Simultaneous Planning and Implementation

This process demonstrates the leader's strong interest in implementing the outcome of planning.
Short-term wins towards long-term goals keep team members motivated.
Implementation could provide feedback to planning.
Task forces with volunteered membership and elected
leaders are frequently used for identifying implementation activities, responsible parties, and timelines.
Properly executed, this process helps build a "culture of
experimentation" for the organization.

V – 7. Balance Analysis and Actions

Action without analysis is not wise.
Analysis without action appears to be indecisive.
Properly set scope, purpose, and depth help balance the analysi and action.
Frequently, analyses do not have to reach "perfection" to be useful.
Many analyses require reasoning with uncertain and incomplete information. Leaders are expected to exercise good judgments in deciding the corresponding courses of actions.
Outcomes of actions are valuable in refining or enhancing future analyses.

V – 8. Promote Graceful Effectiveness

■ There are usually many ways to get things done and goals accomplished. ☐ Collegial and cooperating environments promote system wide effectiveness. ☐ Every member of an organization deserves to be in a productive and pleasant environment at his/her work place. ☐ The "being part of a solution" mentality is worth cultivating within an organization. ☐ System level optimum (as opposed to local optimum) is easier to achieve when things are done with graceful effectiveness.

V − 9. Build Knowledge and Wisdom

- ☐ A learning organization is very good at systematically capturing, sharing, and utilizing knowledge and wisdom from the information gathered, analyses performed, creativity generated, success achieved, and lessons learned.
- ☐ Success breeds success; especially for organizations that are effective in building their knowledge and wisdom.
- ☐ Building knowledge and wisdom is a continuous process.

V – 10. Empower with Knowledge and Wisdom (kW)

- ☐ Leadership intelligence relies heavily on information, knowledge and wisdom.
- ☐ Sharing of accumulated knowledge and wisdom should be strongly encouraged.
- ☐ Organizational knowledge and wisdom enhance the organization's sustainability and competiveness.
- ☐ Sustainability is "continue to do well."
- ☐ Competitiveness is "position to win."

Thank You!

2011 ASABE
James R. and Karen A. Gilley
Academic Leadership Award

"The courage to soar....
The conviction to prepare others for flight"

kcting@illinois.edu

Empower with knowledge and wisdom for life