
INTRODUCTION TO MATLAB

Ross L. Spencer

Department of Physics and Astronomy

Brigham Young University

c© 2000 Ross L. Spencer and Brigham Young University

This is a tutorial to help you get started in Matlab. To find more details see the very
helpful book Mastering MATLAB 6 by Duane Hanselman and Bruce Littlefield. Examples
of Matlab code in this pamphlet are in typewriter font like this. As you read through the
sections below type and execute in Matlab all of the examples, either at the � command
line prompt or in a test program you make called test.m. Longer sections of code are
flagged with the characters %begin and %end. All of the Matlab code between these two
flags can be found in the file tutorial.m which you can find on the Physics 330 web page
at www.physics.byu.edu.

This booklet can also be used as a reference manual because it is short, it has lots of
examples, and it has a table of contents and an index. It is almost true that the basics of
Matlab are in sections 1-9 while physics applications are in sections 9-17. Please tell me
about mistakes and make suggestions to improve it (ross spencer@byu.edu).

Contents

1 Running Matlab 3
1.1 Starting . 3
1.2 It’s a Calculator . 3
1.3 Making Script Files . 3
1.4 Running Script Files . 4
1.5 Pause command . 4
1.6 Online Help . 4
1.7 Making Matlab Be Quiet . 5
1.8 Debugging . 5
1.9 Arranging the Desktop . 6
1.10 Sample Script . 8
1.11 Breakpoints and Stepping . 8

2 Variables 9
2.1 Numerical Accuracy . 9
2.2 π . 9
2.3 Assigning Values to Variables . 10
2.4 Matrices . 10
2.5 Strings . 11

3 Input, Calculating, and Output 11
3.1 Input . 11
3.2 Calculating . 11
3.3 Add and Subtract . 12
3.4 Multiplication . 12
3.5 Complex Arithmetic . 13
3.6 Mathematical Functions . 13
3.7 Housekeeping Functions . 14
3.8 Output . 14

4 Arrays and x-y Plotting 16
4.1 Colon (:) Command . 16
4.2 xy Plots, Labels, and Titles . 17
4.3 Overlaying Plots . 18
4.4 xyz Plots: Curves in 3-D Space . 18
4.5 Logarithmic Plots . 19
4.6 Generating Multiple Plots . 19
4.7 Controlling the Axes . 20
4.8 Greek Letters, Subscripts, and Superscripts . 20
4.9 Changing Line Widths, Fonts, Etc.. 21

5 Surface, Contour, and Vector Field Plots 21
5.1 Meshgrid and Ndgrid . 21
5.2 Contour Plots and Surface Plots . 22
5.3 Evaluating Fourier Series . 25
5.4 Vector Field Plots . 26

6 Vector Products, Dot and Cross 28

2

7 Linear Algebra 28
7.1 Solve a Linear System . 28
7.2 Max and Min . 29
7.3 Matrix Inverse . 29
7.4 Transpose and Hermitian Conjugate . 29
7.5 Special Matrices . 30
7.6 Determinant . 31
7.7 Norm of Vector (Magnitude) . 31
7.8 Sum the Elements . 31
7.9 Selecting Rows and Columns . 31
7.10 Eigenvalues and Eigenvectors . 32
7.11 Fancy Stuff . 32

8 Polynomials 32
8.1 Roots of a Polynomial . 32
8.2 Find the polynomial from the roots . 33
8.3 Multiply Polynomials . 33
8.4 Divide Polynomials . 33
8.5 First Derivative . 33
8.6 Evaluate a Polynomial . 33
8.7 Fitting Data to a Polynomial . 34

9 Loops and Logic 34
9.1 Loops . 35

9.1.1 Summing a series with a for loop . 35
9.1.2 Products with a for loop . 36
9.1.3 Recursion relations with for loops . 36

9.2 Logic . 37
9.3 Secant Method . 38
9.4 Using Matlab’s Fzero . 41

10 Derivatives and Integrals 42
10.1 Derivatives . 42
10.2 Definite Integrals . 44
10.3 Matlab Integrators . 45

11 Interpolation and Extrapolation 47
11.1 Linear Interpolation and Extrapolation . 47
11.2 Quadratic Interpolation and Extrapolation . 48
11.3 Interpolating With polyfit and polyval . 49
11.4 Matlab Commands Interp1 and Interp2 . 50

12 FFT (Fast Fourier Transform) 53
12.1 Fourier Analysis . 53
12.2 Matlab’s FFT . 53

13 Make Your Own Functions: Inline and M-files 56
13.1 Inline Functions . 57
13.2 M-file Functions . 57
13.3 Derivative Function derivs.m . 58
13.4 Definite Integral Function defint.m . 59
13.5 Indefinite Integral Function indefint.m . 60

14 Fitting Functions to Data 62

15 Systems of Nonlinear Equations 65

3

16 Ordinary Differential Equations 67
16.1 Decay of a Radioactive Sample . 67
16.2 Simple Harmonic Oscillator . 68
16.3 Euler’s Method . 68
16.4 Second-order Runge-Kutta . 70
16.5 Matlab’s Differential Equation Solvers . 71
16.6 Event Finding with Matlab’s Differential Equation Solvers . 75

17 Publication Quality Plots 78

4

1 Running Matlab

1.1 Starting

Get on a department PC or buy Student Matlab for your own machine and start the program.
Note: the student version of Matlab is cheap, powerful, and even has part of Maple in it. You
should buy it while you still have a student ID because after you graduate it’s very expensive.
Try www.mathworks.com.

1.2 It’s a Calculator

You can use Matlab as a calculator by typing commands at the � prompt, like these. Try
them out.

1+1

2*3

5/6

exp(-3)

atan2(-1,2)

And just like many hand calculators, ans in Matlab means the last result calculated (like %
in Maple).

sin(5)

ans

Note that Matlab’s trig functions are permanently set to radians mode. Note also that
the way to enter numbers like 1.23× 1015 is

1.23e15

And here’s another useful thing. The up-arrow key ↑ will display previous commands.
And when you back up to a previous command that you like, hit Enter and it will execute.
Or you can edit it when you get to it (use ←, →, and Del), then execute it. Try doing this
now to re-execute the commands you have already typed.

1.3 Making Script Files

Most of the work you will do in Matlab will be stored in files called scripts containing Matlab
commands to be executed over and over again. To make a script, first browse or type in the
current directory window on the tool bar to put yourself in the directory where you want
to store your Matlab scripts. Then open a new text file in the usual way by clicking on the
empty document on the tool bar, or open an old one to be edited. A script can be filled with
a sequence of Matlab commands that will be executed from top to bottom just as if you had
typed them on the command screen. These files have .m extensions (automatically added
in Windows) and can be executed by typing their names (without the .m extension) in the
command window. For example, if you create a script called test.m you can execute it in
the command window by typing test. Do not choose file names that start with numbers, like
430lab1a.m. When Matlab receives the start of a number on the command line it thinks a
calculation is coming, and since 430lab1a is not a valid calculation Matlab will give you an
error.

5

During a session keep this file open so you can modify and debug it. And remember to
save the changes you make (Ctrl-s is a quick way) or Matlab in the command window won’t
know that you have made changes to the script.

Document your code by including lines in it that begin with %, like this. (Note: don’t
try to execute these lines of code; they just illustrates how to put comments in.)

% This is a comment line

Or you can put comments at the end of a line of code like this:

f=1-exp(-g*t) % compute the decay fraction

You may need to type lines into your script that are too long to see well. To make the
code look better you can continue program lines onto successive lines by using the ... syntax:
(Note: don’t try to execute these lines of code; they just illustrate how to continue long
lines.)

a=sin(x)*exp(-y)*...

log(z)+sqrt(b);

Finally, nearly always begin your scripts with the clear command. This is like Maple’s
restart and makes sure that you don’t have leftover junk active in Matlab that will interfere
with your code.

1.4 Running Script Files

When you have a script written and saved, go to the window with the Matlab command
prompt � and type the name of your file without the .m extension, like this:

test

Your script will then run. (Or you can use the debug menu in the editor, or the “Save and
Run” shortcut key, F5.)

1.5 Pause command

A pause command in a script causes execution to stop temporarily. To continue just hit
Enter. You can also give it a time argument like this

pause(.2)

which will cause the script to pause for 0.2 seconds, then continue. And, of course, you can
ask for a pause of any number or fractions of seconds. Note, however, that if you choose
a really short pause, like 0.001 seconds, the pause will not be so quick. Its length will be
determined instead by how fast the computer can run your script.

1.6 Online Help

If you need to find out about something in Matlab you can use help or lookfor at the
� prompt. There is also a wealth of information under Help Desk in the Help menu
of Matlab’s command window. For example maybe you are wondering about the atan2

function mentioned in Sec. 1.2. Type

help atan2

6

at the � prompt to find information about how this form of the inverse tangent function
works. Also type

help bessel

to find out what Matlab’s Bessel function routines are called. Help will only work if you
know exactly how Matlab spells the topic you are looking for.

Lookfor is more general. Suppose you wanted to know how Matlab handles elliptic
integrals. help elliptic is no help, but typing

lookfor elliptic

will tell you that you should use

help ellipke

to find what you want.

1.7 Making Matlab Be Quiet

Any line in a script that ends with a semicolon will execute without printing to the screen.
Try, for example, these two lines of code in a script or at the � command prompt.

a=sin(5);

b=cos(5)

Even though the variable a didn’t print, it is loaded with sin (5), as you can see by typing
this:

a

1.8 Debugging

When your script fails you will need to look at the data it is working with to see what went
wrong. In Matlab this is easy because after you run a script all of the data in that script is
available at the Matlab � prompt. So if you need to know the value of a in your script just
type

a

and its value will appear on the screen. You can also make plots of your data in the command
window. For example, if you have arrays x and y in your script and you want to see what
y(x) looks like, just type plot(x,y) at the command prompt.

The following Matlab commands are also useful for debugging:

who lists active variables

whos lists active variables and their sizes

what lists .m files available in the current directory

7

1.9 Arranging the Desktop

A former student, Lance Locey, went directly from this Introduction to Matlab to doing
research with it and has found the following way of arranging a few of Matlab’s windows on
the desktop to be very helpful. (A visual representation of this layout appears on the next
page.)

1. Make the command window wide and not very tall, stretching across the bottom of
the desktop.

2. Open a script editing window (click on the open-a-file icon on the tool bar) and place
on the left side, just above the command window.

3. Click on View on the tool bar, then on Workspace to open the workspace window, and
place it at the upper right.

4. In the command window type a=1 so that you have a variable in the workspace window,
then double click on the yellow name icon for a in the workspace window to make the Array
Editor appear. Then place this window just below the workspace window and above the
command window, at the left side of the desktop (see the next page.)

With these windows in place you can simultaneously edit your script, watch it run in
the command window, and view the values of variables in the array editor. You will find
that this is very helpful later when our scripts become more complicated, because the key
to debugging is to be able to see the sizes of the arrays that your script is using and the
numerical values that they contain. In the next section you will work through a simple
example of this procedure.

8

C
om

m
an

d
W

in
do

w

>
>

S
cr

ip
t E

di
tin

g
W

in
do

w
W

or
ks

pa
ce

 W
in

do
w

A
rr

ay
 E

di
to

r

9

1.10 Sample Script

To help you see what a script looks like and how to run and debug it, here is a simple one
that asks for a small step-size h along the x-axis, then plots the function f(x) = e−x/6 cos x
from x = 0 to x = 20. The script then prints the step-size h and tells you that it is finished.
The syntax and the commands used in this script are unfamiliar to you now, but you will
learn all about them shortly. Type this script into an M-file called test.m using Matlab’s
editor with the desktop arranged as shown on the previous page. Save it, then run it by
typing

test

in the command window. Or, alternatively, press F5 while the editing window is active and
the script will be saved, then executed. Run the sample script below three times using these
values of h: 1, 0.1, 0.01. As you run it look at the values of the variables h, x, and f in the
workspace window at the upper right of the desktop, and also examine a few values in the
array editor just below it so that you understand what the array editor does.

Sample script:

clear; % clear all variables from memory

close all; % close all figure windows

h=input(’ Enter the step-size h - ’) ;

x=0:h:20; % build an array of points [0,h,2h,...,20]

f=exp(-x/6).*cos(x); % build the array [f(0),f(h),...f(20)]

plot(x,f)

fprintf(’ Plot completed, h = %g \n’,h)

1.11 Breakpoints and Stepping

When a script doesn’t work properly, you need to find out why and then fix it. It is very
helpful in this debugging process to watch what the script does as it runs, and to help you
do this, Matlab comes with two important features: breakpoints and stepping.

To see what a breakpoint does, put the cursor on the x=0:h:20 line in the sample script
above and either click on Breakpoints on the tool bar and select Set/Clear, or press F12.
Now press F12 repeatedly and note that the little red dot at the beginning of the line toggles
on and off, meaning that F12 is just an on-off switch set set a breakpoint. When the red
dot is there it means that a breakpoint has been set, which means that when the script runs
it will execute the instructions in the script until it reaches the breakpoint, and then it will
stop. Make this happen by pressing F5 and watching the green arrow appear on the line
with the breakpoint. Look at the workspace window and note that h has been given a value,
but that x has not. This is because the breakpoint stops execution just before the line on
which it is set.

Now you can click on the Debug icon on the tool bar to see what to do next, but the most
common things to do are to either step through the code executing each line in turn (F10)
while watching what happens to your variables in the workspace and array editor windows,

10

or to just continue after the breakpoint to the end (F5.) Take a minute now and use F10 to
step through the script while watching what happens in the other windows.

When you write a script to solve some new problem, you should always step through it
this way so that you are sure that it is doing what you designed it to do. You will have lots
of chances to practice debugging this way as you work through the examples in this book.

2 Variables

Maple has over 100 different data types; Matlab has just two: the matrix and the string. In
both languages variables are not declared, but are defined on the fly as it executes. Note
that names in Matlab are case sensitive, so watch your capitalization. Also: please don’t
follow the ridiculous trend of making your code more readable by using long variable names
with mixed lower- and upper-case letters and underscores sprinkled throughout. Newton’s
law of gravitation written in this style would be coded this way:

Force_of_1_on_2 = G*Mass_of_1*Mass_of_2/Distance_between_1_and_2^2

You are asking for an early end to your programming career via repetitive-stress injury if
you code like this. Do it this way:

F=G*m1*m2/r12^2

2.1 Numerical Accuracy

All numbers in Matlab have 15 digits of accuracy. When you display numbers to the screen,
like this

355/113

you may think Matlab only works to 5 significant figures. This is not true; it’s just displaying
five. If you want to see them all type

format long e

The four most useful formats to set are

format short (the default)

format long

format long e

format short e

Note: e stands for exponential notation.

2.2 π

Matlab knows the number π.

pi

Try displaying π under the control of each of the three formats given in the previous section.
Note: you can set pi to anything you want, like this, pi=2; but please don’t.

11

2.3 Assigning Values to Variables

The assignment command in Matlab is simply the equal sign. For instance,

a=20

assigns 20 to the variable a, as Maple would do with a := 20.

2.4 Matrices

Matlab thinks the number 2 is a 1x1 matrix:

N=2

size(N)

The array

a=[1,2,3,4]

size(a)

is a 1x4 matrix (row vectors are built with commas); the array

b=[1;2;3;4]

size(b)

is a 4x1 matrix (column vectors are built with semicolons, or by putting rows on separate
lines-see below.)

The matrix

c=[1,2,3;4,5,6;7,8,9]

size(c)

is a 3x3 matrix (row entries separated by commas, different rows separated by semicolons.)
It should come as no surprise that the Mat in Matlab stands for matrix.

When matrices become large the , and ; way of entering them is awkward. A more visual
way to type large matrices in a script is to use spaces in place of the commas and to press
the Enter key at the end of each row in place of the semicolons, like this:

A = [1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16]

This makes the matrix look so nice in a script that you probably ought to use it exclusively.
When you want to access the elements of a matrix you use the syntax A(row,column).

For example, to get the element of A in the 3rd row, 5th column you would use A(3,5). And
if you have a matrix or an array and you want to access the last element in a row or column,
you can use Matlab’s end command, like this:

c(end)

A(3,end)

12

2.5 Strings

A string is a set of characters, like this

s=’This is a string’

And if you need an apostrophe in your string, repeat a single quote, like this:

t=’Don’’t worry’

And if you just want to access part of a string, like the first 7 characters of s (defined above)
use

s(1:7)

Some Matlab commands require options to be selected or set by using strings. Make sure
you enclose them in single quotes, as shown above. If you want to know more about how to
handle strings type help strings.

3 Input, Calculating, and Output

3.1 Input

To have a script request and assign a value to the variable N from the keyboard use

N=input(’ Enter a value for N - ’)

If you enter a single number, like 2.7, then N will be a scalar variable. If you enter an array,
like this: [1,2,3,4,5], then N will be an array. If you enter a matrix, like this: [1,2,3;4,5,6;7,8,9],
then N will be a 3x3 matrix. And if you don’t want the variable you have entered to echo
on the screen, end the input command line with a semicolon.

You can also enter data from a file filled with rows and columns of numbers. Matlab
reads the file as if it were a matrix with the first line of the file going into the first row of
the matrix. If the file were called data.fil and looked like this

1 2 3

4 5 6

7 8 9

then the Matlab command

load data.fil

would produce a matrix called data filled with the contents of the file.

3.2 Calculating

Matlab only crunches numbers. It doesn’t do any symbolic algebra, so it is much less capable
than Maple, but because it doesn’t have to do hard symbolic stuff, it can handle numbers
much faster than Maple can. (Testimonial: “I, Scott Bergeson, do hereby certify that I wrote
a data analysis code in Maple that took 25 minutes to run. When I converted the code to
Matlab it took 15 seconds.”) Here’s a brief summary of what it can do with numbers, arrays,
and matrices.

13

3.3 Add and Subtract

Matlab knows how to add and subtract numbers, arrays, and matrices. As long as A and B
are two variables of the same size (e.g., both 2x3 matrices), then A + B and A−B will add
and subtract them as matrices:

A=[1,2,3;4,5,6;7,8,9]

B=[3,2,1;6,4,5;8,7,9]

A+B

A-B

3.4 Multiplication

The usual multiplication sign * has special meaning in Matlab. Because everything in Matlab
is a matrix, * means matrix multiply. So if A is a 3x3 matrix and B is another 3x3 matrix,
then A ∗ B will be their 3x3 product. Similarly, if A is a 3x3 matrix and C is a 3x1 matrix
(column vector) then A ∗C will be a new 3x1 column vector. And if you want to raise A to
a power by multiplying it by itself n times, you just use

A^n

For a language that thinks everything in the world is a matrix, this is perfectly natural. Try

A*B

A*[1;2;3]

A^3

But there are lots of times when we don’t want to do matrix multiplication. Sometimes we
want to take two big arrays of numbers and multiply their corresponding elements together,
producing another big array of numbers. Because we do this so often (you will see many
examples later on) Matlab has a special symbol for this kind of multiplication:

.*

For instance, the dot multiplication between the arrays [a,b,c] and [d,e,f] would be the
array [a*d,b*e,c*f]. And since we might also want to divide two big arrays this way, or
raise each element to a power, Matlab also allows the operations

./ and .^

For example, try

[1,2,3].*[3,2,1]

[1,2,3]./[3,2,1]

[1,2,3].^2

These “dot” operators are very useful in plotting functions and other kinds of signal pro-
cessing. (You are probably confused about this dot business right now. Be patient. When
we start plotting and doing real calculations this will all become clear.)

14

3.5 Complex Arithmetic

Matlab works as easily with complex numbers as with real ones. The variable i is the usual
imaginary number i =

√
−1, unless you are so foolish as to assign it some other value, like

this:

i=3

If you do this you no longer have access to imaginary numbers, so don’t ever do it. If you
accidentally do it the command clear i will restore it to its imaginary luster. By using i

you can do complex arithmetic, like this

z1=1+2i

% or you can multiply by i, like this

z1=1+2*i

z2=2-3i

% add and subtract

z1+z2

z1-z2

% multiply and divide

z1*z2

z1/z2

And like everything else in Matlab, complex numbers work as elements of arrays and matrices
as well.

When working with complex numbers we quite often want to pick off the real part or the
imaginary part of the number, find its complex conjugate, or find its magnitude. Or perhaps
we need to know the angle between the real axis and the complex number in the complex
plane. Matlab knows how do all of these

z=3+4i

real(z)

imag(z)

conj(z)

abs(z)

angle(z)

Matlab also knows how to evaluate many of the functions discussed in the next section
with a complex argument. Perhaps you recall Euler’s famous formula eix = cos x + i sin x?
Matlab knows it too.

exp(i*pi/4)

Matlab knows how to handle complex arguments for all of the trig, exponential, and hyper-
bolic functions. It can do Bessel functions of complex arguments too.

3.6 Mathematical Functions

Matlab knows all of the standard functions found on scientific calculators and even many
of the special functions that Maple can do. I will give you a list below of a bunch of them,

15

but first you need to know an important feature that they all share. They work just like the
“dot” operators discussed in the previous section. This means, for example, that it makes
sense to take the sine of an array: the answer is just an array of sine values, e.g.,

sin([pi/4,pi/2,pi])= [0.7071 1.0000 0.0000]

OK, here’s the list of function names that Matlab knows about. You can use online help
to find details about how to use them. Notice that the natural log function ln x is the Matlab
function log(x).

cos(x) sin(x) tan(x) sec(x) csc(x) cot(x)
acos(x) asin(x) atan(x) atan2(y,x)
exp(x) log(x) [log(x) is ln(x)] log10(x) log2(x) sqrt(x)
cosh(x) sinh(x) tanh(x) sech(x) csch(x) coth(x)
acosh(x) asinh(x) atanh(x)
sign(x) airy(n,x) besselh(n,x) besseli(n,x) besselj(n,x) besselk(n,x)
bessely(n,x) beta(x,y) betainc(x,y,z) betaln(x,y) ellipj(x,m) ellipke(x)
erf(x) erfc(x) erfcx(x) erfinv(x) gamma(x) gammainc(x,a)
gammaln (x) expint(x) legendre(n,x) factorial(x)

3.7 Housekeeping Functions

Here are some functions that don’t really do math but are useful in programming.

abs(x) the absolute value of a number (real or complex)
clc clears the command window; useful for beautifying printed output
ceil(x) the nearest integer to x looking toward +∞
clear clears all assigned variables
close all closes all figure windows
close 3 closes figure window 3
fix(x) the nearest integer to x looking toward zero
fliplr(A) flip a matrix A, left for right
flipud(A) flip a matrix A, up for down
floor(x) the nearest integer to x looking toward -∞
length(a) the number of elements in a vector
mod(x,y) the integer remainder of x/y; see online help if x or y are negative
rem(x,y) the integer remainder of x/y; see online help if x or y are negative
rot90(A) rotate a matrix A by 90◦

round(x) the nearest integer to x
sign(x) the sign of x and returns 0 if x=0
size(c) the dimensions of a matrix

Try floor([1.5,2.7,-1.5]) to see that these functions operate on arrays and not just
on single numbers.

3.8 Output

Hold it: so far you may have executed most of the example Matlab commands in the com-
mand window. From now on it will prepare you better for the more difficult material coming

16

up if you have both a command window and an M-file window open. Put the examples to
be run in the M-file (call it junk.m), then execute the examples from the command window
by typing

junk

OK, let’s learn about output. To display printed results you can use the fprintf command.
For full information type

help fprintf

but to get you started, here are some examples. Try them so you know what each one
produces. (Here’s a hint: the stuff inside the single quotes is a string which will print on the
screen; % is where the number you are printing goes; and the stuff after % is a format code.
A g means use “whatever” format; if the number is really big or really small, use scientific
notation, otherwise just throw 6 significant figures on the screen in a format that looks good.
The format 6.2f means use 2 decimal places and fixed-point display with 6 spaces for the
number. An e means scientific notation, with the number of decimal places controlled like
this: 1.10e.)

fprintf(’ N =%g \n’,500)

fprintf(’ x =%1.12g \n’,pi)

fprintf(’ x =%1.10e \n’,pi)

fprintf(’ x =%6.2f \n’,pi)

fprintf(’ x =%12.8f y =%12.8f \n’,5,exp(5))

Note: \n is the command for a new line. If you want all the details on this stuff, look in a
C-manual or Chapter 10 of Mastering Matlab 6.

This command will also write output to a file. Here is an example from online help that
writes a file filled with a table of values of x and exp(x) from 0 to 1. Note that when using
Windows that a different line-feed character must be used with \r\n replacing \n (see the
fprintf below.)

(Note: in the example below, don’t put the comments in junk.m; just type in the code
lines.)

%***

% build an array of x-values from 0 to 1 in steps of 0.1

% (using the colon command discussed in the next section

% Its syntax is x=xstart:dx:xend.)

%***

x=0:.1:1;

% check the length of the x array

N=length(x)

17

% build a 2xN matrix with a row of x and a row of exp(x)

y=[x;exp(x)];

%***

% open a file to write the matrix in - fid is a unit number

% to be used later when we write the file and close it

% there is nothing special about the name fid - fxd works too,

% any variable is OK

%***

fid=fopen(’file1.txt’,’w’)

%***

% write the matrix to the file - note that it will be in the

% current Matlab directory. Type cd to see where you are.

% Matlab writes the file as two columns instead of two rows.

%***

fprintf(fid,’%6.2f %12.8f \r\n’,y)

% close the file

st=fclose(fid);

After you try this, open file1.txt, look at the way the numbers appear in it, and compare
them to the format commands %6.2f and %12.8f to learn what they mean. Write the file
again using the %g format for both columns and look in the file again.

4 Arrays and x-y Plotting

4.1 Colon (:) Command

Simple plots of y vs. x are done with Matlab’s plot command and arrays. These arrays are
easily built with the colon (:) command. To build an array x of x-values starting at x = 0,
ending at x = 10, and having a step size of h = .01 type this:

clear;close all; % close the figure windows

x=0:.01:10;

Note that the semicolon at the end of this line is crucial, unless you want to see 1001 numbers
scroll down your screen. If you do make this mistake and the screen print is going to take
forever, ctrl-c will rescue you.

An array like this that starts at the beginning of an interval and finishes at the end of
it is called a cell-edge grid. A cell-center grid is one that has N subintervals, but the data
points are at the centers of the intervals, like this

18

dx=.01;

x=.5*dx:dx:10-0.5*dx;

Both kinds of grids are used in computational physics. (Note: Matlab’s linspace command
also makes cell-edge grids. Check it out with help linspace.)

And if you leave the middle number out of this colon construction, like this

t=0:20;

then Matlab assumes a step size of 1. You should use the colon command whenever pos-
sible because it is a pre-compiled Matlab command. Tests show that using : is about 20
times faster than using a loop that you write yourself (discussed in Chapter 9). To make a
corresponding array of y values according to the function y(x) = sin(5x) simply type this

y=sin(5*x);

Both of these arrays are the same length, as you can check with the length command (Note
that commands separated with commas just execute one after the other, like this:)

length(x),length(y)

4.2 xy Plots, Labels, and Titles

To plot y vs. x, just type this

close all; % (don’t clear--you will lose the data you want to plot)

plot(x,y,’r-’);

The ‘r-’ option string tells the plot command to plot the curve in red connecting the dots
with a continuous line. Other colors are also possible, and instead of connecting the dots
you can plot symbols at the points with various line styles between the points. To see what
the possibilities are type help plot.

And what if you want to plot either the first or second half of the x and y arrays? The
colon and end commands can help:

nhalf=ceil(length(x)/2);

plot(x(1:nhalf),y(1:nhalf),’b-’)

plot(x(nhalf:end),y(nhalf:end),’b-’)

To label the x and y axes, do this after the plot command: (Note that Greek letters
and other symbols are available through LaTex format–see Greek Letters, Subscripts, and
Superscripts in Section 4.8.)

xlabel(’\theta’)

ylabel(’F(\theta)’)

And to put a title on you can do this:

title(’F(\theta)=sin(5 \theta)’)

19

You can even build labels and titles that contain numbers you have generated; simply use
Matlab’s sprintf command, which works just like fprintf except that it writes into a string
variable instead of to the screen. You can then use this string variable as the argument of
the commands xlabel, ylabel, and title, like this:

s=sprintf(’F(\\theta)=sin(%i \\theta)’,5)

title(s)

Note that to force LaTex symbols to come through correctly when using sprintf you have
to use two backslashes instead of one.

4.3 Overlaying Plots

Often you will want to overlay two plots on the same set of axes. There are two ways you
can do this.

%***

% Here’s the first way -- just ask for multiple plots on the

% same plot line

%***

close

y2=cos(x); % load y2 with cos(x), the second function

% plot both

plot(x,y,’r-’,x,y2,’b-’)

%***

% Here’s the second way -- after the first plot tell Matlab

% to hold the plot so you can put a second one with it

%***

close all;

plot(x,y,’r-’)

hold on

plot(x,y2,’b-’)

You can now call as many plots as you want and they will all go on the same figure. To
release it use the command

hold off

4.4 xyz Plots: Curves in 3-D Space

Matlab will draw three-dimensional curves in space with the plot3 command. Here is how
you would do a spiral on the surface of a sphere using spherical coordinates.

20

clear;close all;

dphi=pi/100; % set the spacing in azimuthal angle

N=30; % set the number of azimuthal trips

phi=0:dphi:N*2*pi;

theta=phi/N/2; % go from north to south once

r=1; % sphere of radius 1

% convert spherical to Cartesian

x=r*sin(theta).*cos(phi);

y=r*sin(theta).*sin(phi);

z=r*cos(theta);

% plot the spiral

plot3(x,y,z,’b-’)

axis equal

4.5 Logarithmic Plots

To make log and semi-log plots use the commands semilogx, semilogy, and loglog. They
work like this.

x=0:.1:8;

y=exp(x);

semilogx(x,y);

title(’Semilogx’)

pause

semilogy(x,y);

title(’Semilogy’)

pause

loglog(x,y);

title(’Loglog’)

4.6 Generating Multiple Plots

You may want to put one graph in figure window 1, a second plot in figure window 2, etc..
To do so, put the Matlab command figure before each plot command, like this

x=0:.01:20;

f1=sin(x);

f2=cos(x)./(1+x.^2);

21

figure

plot(x,f1)

figure

plot(x,f2)

And once you have generated multiple plots, you can bring each to the foreground on
your screen either by clicking on them and moving them around, or by using the command
figure(1) to pull up figure 1, figure(2) to pull up figure 2, etc.. This might be a useful
thing to use in a script. See online help for more details.

4.7 Controlling the Axes

You have probably noticed that Matlab chooses the axes to fit the functions that you are
plotting. You can override this choice by specifying your own axes, like this.

close all;

x=.01:.01:20;

y=cos(x)./x;

plot(x,y)

axis([0 25 -5 5])

Or, if you want to specify just the x-range or the y-range, you can use xlim:

plot(x,y)

xlim([0 25])

or ylim:

plot(x,y)

ylim([-5 5])

And if you want equally scaled axes, so that plots of circles are perfectly round instead of
elliptical, use

axis equal

4.8 Greek Letters, Subscripts, and Superscripts

When you put labels and titles on your plots you can print Greek letters, subscripts, and
superscripts by using the LaTex syntax. (See a book on LaTex for details.) To print Greek
letters just type their names preceded by a backslash, like this:

\alpha \beta \gamma \delta \epsilon \phi
\theta \kappa \lambda \mu \nu \pi
\rho \sigma \tau \xi \zeta

You can also print capital Greek letters, like this \Gamma.
To put a subscript on a character use the underscore character on the keyboard: θ1 is

coded by typing \theta 1. And if the subscript is more than one character long do this:
\theta {12} (makes θ12). Superscripts work the same way only using the ∧ character: use
\theta∧{10} to print θ10.

To write on your plot you can just click A on the figure tool bar, then click in the figure
window where you want the text to appear and type the text. You can use LaTex Greek
here too. Or, you can use Matlab’s text command in the format:

22

text(10,.5,’Hi’);

which will place the text ”Hi” at position x = 10 and y = 0.5 on your plot.

4.9 Changing Line Widths, Fonts, Etc..

If you want to change the look of anything on your plot, like the font style or size of text,
the width of the lines, the font style and size of the axis labels, etc.., just left click on the
thing you want to change until it is highlighted, then right click on it and select Properties.

This will take care of simple plots, but if you want to make publication quality figures
you will have to work harder. See the section at the end of this booklet titled Plots for
Publication by Tom Jenkins.

5 Surface, Contour, and Vector Field Plots

5.1 Meshgrid and Ndgrid

Matlab will also display functions of the type f(x, y), either by making a contour plot (like a
topographic map) or by displaying the function as height above the xy plane like a perspective
drawing. Start by defining arrays x and y that span the region that you want to plot, then
create the function f(x, y) over the plane, and finally either use contour, surf, or mesh.
The example that follows is one long piece of Matlab code. Put it in the file test.m, put
pauses in appropriate places, and slowly execute your way through it. like this

%begin 5.1

%***

% Define the arrays x and y

% Warning: don’t make the step size too small or you will

% kill the system

%***

clear;close all;

x=-1:.1:1;y=0:.1:1.5;

%***

% Use meshgrid to convert these 1-d arrays into 2-d matrices of

% x and y values over the plane

%***

[X,Y]=meshgrid(x,y);

%***

% Get f(x,y) by using f(X,Y). Note the use of .* with X and Y

% rather than with x and y

%***

23

f=(2-cos(pi*X)).*exp(Y);

%***

% Note that this function is uphill in y between x=-1 and x=1

% and has a valley at x=0

%***

surf(X,Y,f);

%end 5.1

Make sure your Workspace window is open, then click on X and Y to view them with
the Array Editor. Look at them until you understand how meshgrid has turned your one-
dimensional arrays x and y into their two-dimensional versions X and Y.

It is sometimes helpful when doing physics problems in two dimensions to have the matrix
f(i, j) correspond to f(x, y), so that the index i represents x and the index j represents y.
Unfortunately, meshgrid does this backwards, as you can see by checking the lengths of x
and y, and then the size of f in the example above:

length(x)

length(y)

size(f)

But Matlab has another command called ndgrid which is similar to meshgrid but does
the conversion to two dimensions the other way round. The plots look the same, but f(i, j)
is now in the f(x, y) order:

[X,Y]=ndgrid(x,y);

f=(2-cos(pi*X)).*exp(Y);

surf(X,Y,f);

length(x)

length(y)

size(f)

5.2 Contour Plots and Surface Plots

%begin 5.2

%***

% make a contour plot by asking Matlab to evenly space N contours

% between the minimum of f(x,y) and the maximum f(x,y) (the default)

%***

N=40;

contour(X,Y,f,N);

title(’Contour Plot’)

xlabel(’x’)

ylabel(’y’)

pause

24

%***

% You can also tell Matlab which contour levels you want to plot.

% To do so load an array (V in this case) with the values of the

% levels you want to see. In this example they will start at

% the minimum of f, end at the maximum of f, and there will

% be 21 contours.

%

% You can even print contour labels on the plot, which is

% a big help, by assigning the plot to a variable name

% and using the clabel command, as shown below. Only

% every other contour is labeled in this example

%***

close all;

top=max(max(f)); % find the max and min of f

bottom=min(min(f));

dv=(top-bottom)/20; % interval for 21 equally spaced contours

V=bottom:dv:top;

cs=contour(X,Y,f,V);

clabel(cs,V(1:2:21)) % give clabel the name of the plot and

% an array of the contours to label

title(’Contour Plot’)

xlabel(’x’)

ylabel(’y’)

pause

%***

% Now make a surface plot of the function with the viewing

% point rotated by AZ degrees from the x-axis and

% elevated by EL degrees above the xy plane

%***

close all;

surf(X,Y,f); % or you can use mesh(X,Y,f) to make a wire plot

AZ=30;EL=45;

view(AZ,EL);

title(’Surface Plot’)

xlabel(’x’)

ylabel(’y’)

pause

%***

% If you want to manually change the viewing angle of

% a surface plot, click on the circular arrow icon

% on the figure window, then click and move the

% pointer on the graph. Try it until you get the

25

% hang of it.

%

% Here’s a piece of code that lets you fly around the

% surface plot by continually changing the viewing angles

% and using the pause command; I think you’ll be impressed

%***

close all;

surf(X,Y,f);

title(’Surface Plot’)

xlabel(’x’)

ylabel(’y’)

EL=45;

for m=1:100

AZ=30+m/100*360;

view(AZ,EL);

pause(.1); % pause units are in seconds

end

pause

%***

% This same trick will let you make animations of

% both xy and surface plots. To make this surface

% oscillate up and down like a manta ray you could

% do this.

%***

dt=.1;

for m=1:100

t=m*dt;

g=f*cos(t);

surf(X,Y,g);

AZ=30;EL=45;

view(AZ,EL);

title(’Surface Plot’)

xlabel(’x’)

ylabel(’y’)

axis([-1 1 -1 1 min(min(f)) max(max(f))])

pause(.1)

end

%end 5.2

Note that you can find all kinds of cool stuff about surface and contour plotting by typing

26

help graph3d

and then checking out these commands by using help on each one. Another good source is
Mastering Matlab 6, Chapters 26-32.

5.3 Evaluating Fourier Series

Matlab will make graphical displays of infinite series of the kind discussed in Physics 318 and
Physics 441 quickly and easily. Consider this solution for the electrostatic potential in a long
tube of rectangular cross-section bounded by long metal strips held at different potentials.
The tube has width 2b in x and width a in y. The two strips at x = −b and x = +b are
held at potential V0 while the strips at y = 0 and y = a are grounded. (See Introduction
to Electrodynamics, Third Edition by David Griffiths, pages 132-134.) The electrostatic
potential is given by

V (x, y) =
4V0

π

∞∑
n=0

1

(2n + 1)

cosh [(2n + 1)πx/a]

cosh [(2n + 1)πb/a]
sin [(2n + 1)πy/a]

Here is a piece of Matlab code that evaluates this function on an xy grid and displays it
as a surface plot.

%begin 5.3

clear;close all;

% set some constants

a=2;b=1;Vo=1;

% build the x and y grids

Nx=80;Ny=40;

dx=2*b/Nx;dy=a/Ny;

x=-b:dx:b;y=0:dy:a;

% build the 2-d grids for plotting

[X,Y]=meshgrid(x,y);

% set the number of terms to keep

% and do the sum

Nterms=20;

% zero V out so we can add into it

V=zeros(Ny+1,Nx+1);

27

% add the terms of the sum into V

for m=0:Nterms

V=V+cosh((2*m+1)*pi*X/a)/cosh((2*m+1)*pi*b/a).*sin((2*m+1)*pi*Y/a)/(2*m+1);

end

% put on the multiplicative constant

V=4*Vo/pi*V;

% surface plot the result

surf(X,Y,V)

xlabel(’x’);

ylabel(’y’);

zlabel(’V(x,y)’)

%end 5.3

5.4 Vector Field Plots

Matlab will plot vector fields for you with arrows. This is a good way to visualize flows,
electric fields, magnetic fields, etc.. The command that makes these plots is quiver and the
code below illustrates its use in displaying the electric field of a line charge and the magnetic
field of a long wire. Note that the vector field components must be computed in Cartesian
geometry.

%begin 5.4

clear;close

x=-5.25:.5:5.25;y=x; % define the x and y grids (avoid (0,0))

[X,Y]=meshgrid(x,y);

% Electric field of a long charged wire

Ex=X./(X.^2+Y.^2);

Ey=Y./(X.^2+Y.^2);

% make the field arrow plot

quiver(X,Y,Ex,Ey)

title(’E of a long charged wire’)

axis equal % make the x and y axes be equally scaled

pause

% Magnetic field of a long current-carrying wire

28

Bx=-Y./(X.^2+Y.^2);

By=X./(X.^2+Y.^2);

% make the field arrow plot

quiver(X,Y,Bx,By)

axis equal

title(’B of a long current-carrying wire’)

pause

%***

% The big magnitude difference across the region makes most arrows too small

% to see. This can be fixed by plotting unit vectors instead (losing all

% magnitude information

%***

B=sqrt(Bx.^2+By.^2);

Ux=Bx./B;Uy=By./B;

quiver(X,Y,Ux,Uy);

axis equal

title(’B(wire): unit vectors’)

pause

%***

% Or, you can still see qualitative size information

% without such a big variation in arrow size by

% having the arrow length be logarithmic. If s is

% the desired ratio between the longest arrow and

% the shortest one, this code will make the appropriate

% field plot.

%***

Bmin=min(min(B));

Bmax=max(max(B));

s=2; % choose an arrow length ratio

k=(Bmax/Bmin)^(1/(s-1));

logsize=log(k*B/Bmin);

Lx=Ux.*logsize;

Ly=Uy.*logsize;

quiver(X,Y,Lx,Ly);

axis equal

title(’B(wire): logarithmic arrows’)

%end 5.4

29

There may be too much detail to really see what’s going on in some field plots. You can
work around this problem by clicking on the zoom icon on the tool bar and then using the
mouse to define the region you want to look at. Clicking on the zoom-out icon, then clicking
on the figure will take you back where you came from.

6 Vector Products, Dot and Cross

Matlab will do dot and cross products for you with the commands dot and cross, like this:

a=[1,2,3];b=[3,2,1];

dot(a,b)

cross(a,b)

(Cross products only work for three-dimensional vectors but dot products can be used with
vectors of any length.)

7 Linear Algebra

Almost anything you learned about in your linear algebra class Matlab has a command to
do. Here is a brief summary of the most useful ones for physics.

7.1 Solve a Linear System

Matlab will solve the matrix equation Ax = b, where A is a square matrix, where b is a
known column vector, and where x is an unknown column vector. For instance, the system
of equations

x + z = 4 (1)

−x + y + z = 4 (2)

x− y + z = 2 , (3)

which is solved by (x, y, z) = (1, 2, 3)l, is handled in Matlab by defining a matrix A cor-
responding to the coefficients on the left side of this equation and a column vector b cor-
responding to the coefficients on the right (see the example below.) By use of the simple
symbol \ (sort of “backwards divide”) Matlab will use Gaussian elimination to solve this
system of equations, like this:

% here are A and b corresponding to the equations above

A=[1, 0,1

-1, 1,1

1,-1,1];

b=[4

4

2];

30

% now solve for x and see if we obtain [1;2;3], like we should

x=A\b

7.2 Max and Min

The commands max and min return the maximum and minimum values of an array. And
with a slight change of syntax they will also return the indices in the array at which the
maximum and minimum occur.

x=0:.01:5;

y=x.*exp(-x.^2);

% take a look at the function so we know what it looks like

plot(x,y)

% find the max and min

ymin=min(y)

ymax=max(y)

% find the max and min along with the array indices imax and imin

% where they occur

[ymin,imin]=min(y)

[ymax,imax]=max(y)

7.3 Matrix Inverse

The inv command will compute the inverse of a square matrix. For instance, using the
matrix

A=[1,0,-1;-1,1,1;1,-1,1]

we find

% load C with the inverse of A

C=inv(A)

% verify by matrix multiplication that A*C is the identity matrix

A*C

7.4 Transpose and Hermitian Conjugate

To find the transpose of the matrix A just use a single quote with a period, like this

A.’

31

To find the Hermitian conjugate of the matrix A (transpose of A with all elements replaced
with their complex conjugates) type

A’

(notice that there isn’t a period). If your matrices are real, then there is no difference
between these two commands and you might as well just use A’. Notice that if a is a row
vector then a’ is a column vector. You will use the transpose operator to switch between
row and column vectors a lot in Matlab, like this

[1,2,3]

[1,2,3]’

[4;5;6]

[4;5;6]’

7.5 Special Matrices

Matlab will let you load several special matrices. The most useful of these are given here.

% eye:

% load I with the 4x4 identity matrix (the programmer who invented this

% syntax must have been drunk)

I=eye(4,4)

% zeros:

% load Z with a 5x5 matrix full of zeros

Z=zeros(5,5)

% ones:

% load X with a 3x3 matrix full of ones

X=ones(3,3)

% rand:

% load Y with a 4x6 matrix full of random numbers between 0 and 1

% The random numbers are uniformly distributed on [0,1]

Y=rand(4,6)

% And to load a single random number just use

r=rand

% randn:

% load Y with a 4x6 matrix full of random numbers with a Gaussian

% distribution with zero mean and a variance of 1

32

Y=randn(4,6)

7.6 Determinant

Find the determinant of a square matrix this way

det(A)

7.7 Norm of Vector (Magnitude)

Matlab will compute the magnitude of a vector a (the square root of the sum of the squares
of its components) with the norm command

a=[1,2,3]

norm(a)

7.8 Sum the Elements

For arrays the command sum adds up the elements of the array:

% calculate the sum of the squares of the reciprocals of the

% integers from 1 to 10,000

n=1:10000;

sum(1./n.^2)

% compare this answer with the sum to infinity, which is pi^2/6

ans-pi^2/6

For matrices the sum command produces a row vector which is made up of the sum of the
columns of the matrix.

A=[1,2,3;4,5,6;7,8,9]

sum(A)

7.9 Selecting Rows and Columns

Sometimes you will want to select a row or a column of a matrix and load it into an array.
This is done with Matlab’s all-purpose colon (:) command.

To load a column vector b with the contents of the third column of the matrix A use:

b=A(:,3)

Recall that the first index of a matrix is the row index, so this command tells Matlab to
select all of the rows of A in column 3.

To load a row vector c with the contents of the second row of the matrix A use:

c=A(2,:)

You can also select just part of row or column like this:

c=A(2,1:2)

which takes only the first two elements of the second row.

33

7.10 Eigenvalues and Eigenvectors

To build a column vector containing the eigenvalues of the matrix A in the previous section
use

E=eig(A)

To build a matrix V whose columns are the eigenvectors of the matrix A and another matrix
D whose diagonal elements are the eigenvalues corresponding to the eigenvectors in V use

[V,D]=eig(A)

% to select the 3rd eigenvector and load it into

% a column vector use

v3=V(:,3) % i.e., select all of the rows (:) in column 3

7.11 Fancy Stuff

Matlab also knows how to do singular value decomposition, QR factorization, LU factoriza-
tion, and conversion to reduced row-echelon form. And the commands rcond and cond will
give you the condition number of a matrix. To learn about these ideas, consult a textbook
on linear algebra. To learn how they are used in Matlab use the commands;

help svd

help QR

help LU

help rref

help rcond

help cond

8 Polynomials

Polynomials are used so commonly in computation that Matlab has special commands to
deal with them. The polynomial x4 + 2x3− 13x2− 14x + 24 is represented in Matlab by the
array [1,2,-13,-14,24], i.e., by the coefficients of the polynomial starting with the highest
power and ending with the constant term. If any power is missing from the polynomial its
coefficient must appear in the array as a zero. Here are some of the things Matlab can do
with polynomials. Try each piece of code in Matlab and see what it does.

8.1 Roots of a Polynomial

% find the roots of a polynomial

p=[1,2,-13,-14,24];

r=roots(p)

34

8.2 Find the polynomial from the roots

If you know that the roots of a polynomial are 1, 2, and 3, then you can find the polynomial
in Matlab’s array form this way

r=[1,2,3];

p=poly(r)

8.3 Multiply Polynomials

The command conv multiplies two polynomial coefficient arrays and returns the coefficient
array of their product.

a=[1,0,1];

b=[1,0,-1];

c=conv(a,b)

Stare at this result and make sure that it is correct.

8.4 Divide Polynomials

Remember synthetic division? Matlab can do it with the command deconv, giving you the
quotient and the remainder.

% a=x^2+x+1 and b=x+1

a=[1,1,1];b=[1,1];

% now divide b into a finding the quotient and remainder

[q,r]=deconv(a,b)

After you do this Matlab will give you q=[1,0] and r=[0,0,1], which means that q =
x + 0 = x and r = 0x2 + 0x + 1 = 1 so

x2 + x + 1

x + 1
= x +

1

x + 1

8.5 First Derivative

Matlab can take a polynomial array and return the polynomial array of its derivative:

a=[1,1,1,1]

ap=polyder(a)

8.6 Evaluate a Polynomial

If you have an array of x-values and you want to evaluate a polynomial at each one, do this:

% define the polynomial

a=[1,2,-13,-14,24];

35

% load the x-values

x=-5:.01:5;

% evaluate the polynomial

y=polyval(a,x);

% plot it

plot(x,y)

8.7 Fitting Data to a Polynomial

If you have some data in the form of arrays (x,y), Matlab will do a least-squares fit of a
polynomial of any order you choose to this data. In this example we will let the data be the
sine function between 0 and π and we will fit a polynomial of order 4 to it. Then we will
plot the two functions on the same frame to see if the fit is any good. Before going on to
the next section, try fitting a polynomial of order 60 to the data to see why you need to be
careful when you do fits like this.

x=linspace(0,pi,50);

% make a sine function with 1% random error on it

f=sin(x)+.01*rand(1,length(x));

% fit to the data

p=polyfit(x,f,4);

% evaluate the fit

g=polyval(p,x);

% plot fit and data together

plot(x,f,’r*’,x,g,’b-’)

9 Loops and Logic

To use Matlab to solve many physics problems you have to know how to write loops and
how to use logic.

36

9.1 Loops

A loop is a way of repeatedly executing a section of code. It is so important to know how to
write them that several common examples of how they are used will be given here. The two
kinds of loops we will use are the for loop and the while loop. We will look at for loops
first, then study while loops a bit later in the logic section.

The for loop looks like this:

for n=1:N

.

.

.

end

which tells Matlab to start n at 1, then increment it by 1 over and over until it counts up
to N , executing the code between for and end for each new value of n. Here are a few
examples of how the for loop can be used.

9.1.1 Summing a series with a for loop

Let’s do the sum
N∑

n=1

1

n2

with N chosen to be a large integer.

s=0; % set a variable to zero so that 1/n^2 can be repeatedly added to it

N=10000; % set the upper limit of the sum

for n=1:N % start of the loop

% add 1/n^2 to s each time, then put the answer back into s

s=s+1/n^2;

end % end of the loop

fprintf(’ Sum = %g \n’,s) % print the answer

You may notice that summing with a loop takes a lot longer than the colon (:) operator
way of doing it:

% calculate the sum of the squares of the reciprocals of the

% integers from 1 to 10,000

n=1:10000;

sum(1./n.^2)

Try both the loop way and this sum command way and see which is faster. To slow things
down enough that you can see the difference change 10,000 to 100,000. (On my Unix work-
station the : way is 21 times faster than the loop, so use : whenever you can.) To do timing
checks use the cputime command. Look it up in online help.

37

9.1.2 Products with a for loop

Let’s calculate N ! = 1 · 2 · 3 · ...(N − 1) ·N using a for loop that starts at n = 1 and ends at
n = N , doing the proper multiply at each step of the way.

P=1; % set the first term in the product

N=20; % set the upper limit of the product

for n=2:N % start the loop at n=2 because we already loaded n=1

P=P*n; % multiply by n each time and put the answer back into P

end % end of the loop

fprintf(’ N! = %g \n’,P) % print the answer

Now use Matlab’s factorial command to check that you got the right answer:

factorial(20)

You should be aware that the factorial command is a bit limited in that it won’t act on
an array of numbers in the way that cos, sin, exp etc. do. A better factorial command to
use is the gamma function Γ(x) which extends the factorial function to all complex values.
It is related to the factorial function by Γ(N + 1) = N !, and is called in Matlab using the
command gamma(x). so you could also check the answer to your factorial loop this way:

gamma(21)

9.1.3 Recursion relations with for loops

Suppose that we were solving a differential equation by substituting into it a power series of
the form

f(x) =
∞∑

n=1

anx
n

and that we had discovered that the coefficients an satisfied the recursion relation

a1 = 1 ; an+1 =
2n− 1

2n + 1
an

To use these coefficients we need to load them into an array a so that a(1) = a1, a(2) = a2,
Here’s how we could do this using a for loop to load a(1)...a(20).

a(1)=1; % put the first element into the array

N=19; % the first one is loaded, so let’s load 19 more

for n=1:N % start the loop

a(n+1)=(2*n-1)/(2*n+1)*a(n); % the recursion relation

end

disp(a) % display the resulting array of values

Note that the recursion relation was translated into Matlab code just as it appeared in the
formula: a(n+1)=(2*n-1)/(2*n+1)*a(n). The counting in the loop was then adjusted to
fit by starting at n = 1, which loaded a(1 + 1) = a(2), then a(3), etc., then ended at n = 19,

38

which loads a(19 + 1) = a(20). Always make the code you write fit the mathematics as
closely as possible, then adjust the other coding to fit. This will make your code easier to
read and you will make fewer mistakes.

9.2 Logic

Often we only want to do something when some condition is satisfied, so we need logic
commands. The simplest logic command is the if command, which works like this. (Several
examples are given; try them all.)

clear;

a=1;b=3;

% If the number a is positive set c to 1; if a is 0 or negative,

% set c to zero

if a>0

c=1

else

c=0

end

% if either a or b is non-negative, add them to obtain c;

% otherwise multiply a and b to obtain c

if a>=0 | b>=0 % either non-negative

c=a+b

else

c=a*b % otherwise multiply them to obtain c

end

You can build about any logical condition you want if you just know the basic logic
elements. Here they are

Equal ==

Less than <

Greater than >

Less than or equal <=

Greater than or equal >=

Not equal ∼=
And &

Or |

Not ∼
There is also a useful logic command that controls loops: while. Suppose you don’t know

how many times you are going to have to loop to get a job done, but instead want to quit
looping when some condition is met. For instance, suppose you want to add the reciprocals
of squared integers until the term you just added is less than 1e-10. Then you would change
the loop in the

∑
1/n2 example to look like this

39

clear

term=1 % load the first term in the sum, 1/1^2=1

s=term; % load s with this first term

% start of the loop - set a counter n to one

n=1;

while term > 1e-10 % loop until term drops below 1e-10

n=n+1; % add 1 to n so that it will count: 2,3,4,5,...

term=1/n^2; % calculate the next term to add

s=s+term; % add 1/n^2 to s until the condition is met

end % end of the loop

fprintf(’ Sum = %g \n’,s)

This loop will continue to execute until term<1e-10. Note that unlike the for loop, here
you have to do your own counting, being careful about what value n starts at and when it is
incremented (n = n + 1). It is also important to make sure that the variable you are testing
(term in this case) is loaded before the loop starts with a value that allows the test to take
place and for the loop to run (term must pass the while test.)

Sometimes while is awkward to use because you would rather just loop lots of times
checking some condition and then break out of the loop when it is satisfied. The break

command is designed to do this. When break is executed in a loop the script jumps to just
after the end at the bottom of the loop. Here is our sum loop rewritten with break

clear

s=0; % initialize the sum variable

% start of the loop

for m=1:1000000

term=1/n^2;

% add 1/n^2 to s until the condition is met

s=s+term;

if term < 1e-10

break

end

% end of the loop

end

9.3 Secant Method

Here is a real example that you will sometimes use to solve difficult equations of the form
f(x) = 0 in Matlab. (Maple’s fsolve command and Matlab’s fzero command (which you
will learn to use shortly) do this for you automatically; here you will see how they do it.)

The idea is to find two guesses x1 and x2 that are near a solution of this equation. (You
find about where these two guesses ought to be by plotting the function and seeing about

40

Figure 1: The sequence of approximate points in the secant method.

where the solution is. It’s OK to choose them close to each other, like x1 = .99 and x2 = .98.)
Once you have these two guesses find the function values that go with them: f1 = f(x1)
and f2 = f(x2) and compute the slope m = (f2 − f1)/(x2 − x1) of the line connecting the
points. (You can follow what is happening here by looking at Fig. 1.) Then fit a straight line
through these two points and solve the resulting straight line equation y − f2 = m(x − x2)
for the value of x that makes y = 0, i.e., solve the line equation to find

x3 = x2 −
f2

m
= x2 −

f2(x2 − x1)

f2 − f1

as shown in Fig. 1. This will be a better approximation to the solution than either of your
two initial guesses, but it still won’t be perfect, so you have to do it again using x2 and
the new value of x3 as the two new points. This will give you x4 in the figure. You can
draw your own line and see that the value of x5 obtained from the line between (x3, f3) and
(x4, f4) is going to be pretty good. And then you do it again, and again, and again, until
your approximate solution is good enough.

Here’s what the code looks like that solves the equation exp(−x)− x = 0

%begin 9.3

clear;close all;

%***

% Define the function as an in line function (See Section 13

% for more details.)

%***

func=inline(’exp(-x)-x’,’x’);

% First plot the function

x=0:.01:2;

41

f=func(x);

plot(x,f,’r-’,x,0*x,’b-’)

%***

% (Note that the second plot is just a blue x-axis (y=0)

% 0*x is just a quick way to load an array of zeros the

% same size as x)

% From the plot it looks like the solution is near x=.6

% Secant method to solve the equation exp(-x)-x = 0

% Use an initial guess of x1=0.6

%***

x1=0.6;

% find f(x1)

f1=func(x1);

% find a nearby second guess

x2=0.99*x1;

% set chk, the error, to 1 so it won’t trigger the while

% before the loop gets started

chk=1;

% start the loop

while chk>1e-8

% find f(x2)

f2=func(x2);

% find the new x from the straight line approximation and print it

xnew = x2 - f2*(x2-x1)/(f2-f1)

% find chk the error by seeing how closely f(x)=0 is approximated

chk=abs(f2);

% load the old x2 and f2 into x1 and f1; then put the new x into x2

42

x1=x2;f1=f2;x2=xnew;

% end of loop

end

%end 9.3

(Note: this is similar to Newton’s method, also called Newton-Raphson, but when a finite-
difference approximation to the derivative is used it is usually called the secant method.)

9.4 Using Matlab’s Fzero

Matlab has its own zero-finder which probably is similar to the secant method described
above. To use it you must make a special M-file called a function, which we will discuss in
more detail in Sec. 13. Here I will just give you a sample file so that you can see how fzero

works. This function file (called fz.m here) evaluates the function f(x). You just need to
build it, tell Matlab what its name is using the @-sign syntax illustrated below, and also
give Matlab an initial guess for the value of x that satisfies f(x) = 0.

In the section of code below you will find the Matlab function fz(x) and the line of code
invoking fzero that finds the root. The example illustrated here is f(x) = exp(−x)−x = 0.

Here is the function M-file fz.m used by fzero in this example:

%beginfunction fz.m

function f=fz(x)

% evaluate the function fz(x) whose

% roots are being sought

f=exp(-x)-x;

%end fz.m

Here is the Matlab code that uses fzero and fz to do the solve:

%***

% Here is the matlab code that uses fz.m to find

% a zero of f(x)=0 near the guess x=.7

% Note that the @ sign is used to tell Matlab that

% the name of an M-file is being passed into fzero

%***

x=fzero(@fz,.7)

43

Figure 2: The centered derivative approximation works best.

10 Derivatives and Integrals

Matlab won’t give you formulas for the derivatives and integrals of functions like Maple will.
But if you have closely spaced arrays filled with values of x and f(x) Matlab will quickly
give you numerical approximations to the derivative f ′(x) and the integral

∫ b
a f(x)dx.

10.1 Derivatives

In your first calculus class the following formula for the derivative was given:

df

dx
= lim

h→0

f(x + h)− f(x)

h

To do a derivative numerically we use the following slightly different, but numerically more
accurate, form:

df

dx
= lim

h→0

f(x + h)− f(x− h)

2h

It’s more accurate because it’s centered about the value of x where we want the derivative
to be evaluated.

To see the importance of centering, consider Fig. 2. In this figure we are trying to find the
slope of the tangent line at x = 0.4. The usual calculus-book formula uses the data points
at x = 0.4 and x = 0.5, giving tangent line a. It should be obvious that using the “centered”
pair of points x = 0.3 and x = 0.5 to obtain tangent line b is a much better approximation.

As an example of what a good job centering does, try differentiating sinx this way:

dfdx=(sin(1+1e-5)-sin(1-1e-5))/2e-5

% take the ratio between the numerical derivative and the

% exact answer cos(1) to see how well this does

format long e

dfdx/cos(1)

44

You can also take the second derivative numerically using this formula

d2f

dx2
= lim

h→0

f(x + h)− 2f(x) + f(x− h)

h2

For example,

d2fdx2=(sin(1+1e-4)-2*sin(1)+sin(1-1e-4))/1e-8

% take the ratio between the numerical derivative and the

% exact answer -sin(1) to see how well this does

format long e

d2fdx2/(-sin(1))

You may be wondering how to choose the step size h. This is a little complicated; take a
course on numerical analysis and you can see how it’s done. But until you do, here’s a rough
rule of thumb. To approximate the first derivative of f(x) use h = 10−5; to approximate the
second derivative use h = 10−4.

If you want to differentiate a function defined by arrays x and f , then the step size is
already determined; you just have to live with the accuracy obtained by using h = ∆x,
where ∆x is the spacing between points in the x array. Notice that the data must be evenly
spaced for the example I am going to give you to work.

The idea is to approximate the derivative at x = xj in the array by using the function
values fj+1 and fj−1 like this

f ′(xj) ≈
fj+1 − fj−1

2h
This works fine for an N element array at all points from x2 to xN−1, but it doesn’t work
at the endpoints because you can’t reach beyond the ends of the array to find the needed
values of f . So we use this formula for x2 through xN−1, then use linear extrapolation to
find the derivatives at the endpoints, like this

%begin 10.1

dx=1/1000;

x=0:dx:4;

N=length(x);

f=sin(x);

% Do the derivative at the interior points all at once using

% the colon command

dfdx(2:N-1)=(f(3:N)-f(1:N-2))/(2*dx);

% linearly extrapolate to the end points (see the next section)

dfdx(1)=2*dfdx(2)-dfdx(3);

dfdx(N)=2*dfdx(N-1)-dfdx(N-2);

% now plot both the approximate derivative and the exact

45

Figure 3: The midpoint rule works OK if the function is nearly straight across each
interval.

% derivative cos(x) to see how well we did

plot(x,dfdx,’r-’,x,cos(x),’b-’)

%end 10.1

The second derivative would be done the same way. Matlab has its own routines for doing
derivatives; look in online help for diff and gradient.

10.2 Definite Integrals

There are many ways to do definite integrals numerically, and the more accurate these
methods are the more complicated they become. But for everyday use the midpoint method
usually works just fine, and it’s very easy to code. The idea of the midpoint method is to
approximate the integral

∫ b
a f(x)dx by subdividing the interval [a, b] into N subintervals of

width h = (b− a)/N and then evaluating f(x) at the center of each subinterval. We replace
f(x)dx by f(xj)h and sum over all the subintervals to obtain an approximate integral. This
method is shown in Fig. 3. Notice that this method should work pretty well over subintervals
like [1.0,1.5] where f(x) is nearly straight, but probably is lousy over subintervals like [0.5,1.0]
where the function curves.

%begin 10.2

close all;

N=1000;

a=0;b=5;

dx=(b-a)/N;

x=.5*dx:dx:b-.5*dx; % build an x array of centered values

f=cos(x); % load the function

% do the approximate integral

46

Figure 4: Fitting parabolas (Simpson’s Rule) works better.

s=sum(f)*dx

% compare with the exact answer, which is sin(5)

s-sin(5)

%end 10.2

If you need to do a definite integral in Matlab, this is an easy way to do it. And to see
how accurate your answer is, do it with 1000 points, then 2000, then 4000, etc., and watch
which decimal points are changing as you go to higher accuracy. (A function that does this
for you is given in the section titled Make Your Own Functions.)

And if you need to find the indefinite integral, in the section below titled Make Your
Own Functions there is a piece of code that will take arrays of (x, f(x)) and calculate the
indefinite integral function

∫ x
a f(x′)dx′.

10.3 Matlab Integrators

Matlab also has its own routines for doing definite and indefinite integrals using both data
arrays and M-files; look in online help for the commands trapz (works on arrays, not func-
tions), cumtrapz, quad, quadl, and dblquad, or in Mastering Matlab 6, Chapter 23. As an
example, the Matlab routine quad approximates the function with parabolas (as shown in
Fig. 10.3) instead of the rectangles of the midpoint method. This parabolic method is called
Simpson’s Rule. As you can see from Fig. 10.3, parabolas do a much better job, making
quad a standard Matlab choice for integration. As an example of what these routines can
do, here is the way you would use quad to integrate cos xe−x from 0 to 2:

Note that these integration routines need function M-files, as fzero did. These will be
discussed more fully in Chapter 13, so for now just use fint.m, given below, as a template
for doing integrals with quad, quadl, etc..

47

%beginfunction fint.m

%***

% define the function to be integrated in fint.m

function f=fint(x)

%***

% Warning: Matlab will do this integral with arrays of x,

% so use .*, ./, .^, etc. in this function. If you forget

% to use the .-form you will encounter the error:

%

% Inner matrix dimensions must agree.

f=cos(x).*exp(-x);

%end fint.m

%***

%***

%begin 10.3a

% once fint.m is stored in your current directory

% you can use the following commands to integrate.

% simple integral, medium accuracy

quad(@fint,0,2)

% integrate with specified relative accuracy

quad(@fint,0,2,1e-8)

% integrate with specified relative accuracy

% using quadl (notice that quadl is faster--

% always try it first)

quadl(@fint,0,2,1e-8)

%***

%end 10.3a

Or you can use an inline function like this to avoid making another file:

%begin 10.3b

f=inline(’exp(-x).*cos(x)’,’x’)

quadl(f,0,2,1e-8)

48

%end 10.3b

And if parabolas are good, why not use cubics, quartics, etc. to do an even better job?
Well, you can, and Matlab does. The quadl integration command used in the example above
uses higher order polynomials to do the integration and is the best Matlab integrator to use.

Matlab also has a command dblquad that does double integrals. Here’s how to use it.

%beginfunction f2int.m

% First define the integrand as a function of x and y

function f=f2int(x,y)

f=cos(x*y);

%end f2int.m

%***

% Now here’s how to obtain the double integral over

% the xy rectangle (0,2)X(0,2). It runs lots

% faster if you use the ’quadl’ option, as shown below

%***

dblquad(@f2int,0,2,0,2,1e-10,’quadl’)

11 Interpolation and Extrapolation

Since Matlab only represents functions as arrays of values a common problem that comes up
is finding function values at points not in the arrays. Finding function values between data
points in the array is called interpolation; finding function values beyond the endpoints of
the array is called extrapolation. A common way to do both is to use nearby function values
to define a polynomial approximation to the function that is pretty good over a small region.
Both linear and quadratic function approximations will be discussed here.

11.1 Linear Interpolation and Extrapolation

A linear approximation can be obtained with just two data points, say (x1, y1) and (x2, y2).
You learned a long time ago that two points define a line and that the two-point formula for
a line is

y = y1 +
(y2 − y1)

(x2 − x1)
(x− x1)

This formula can be used between any two data points to linearly interpolate. For example,
if x in this formula is half-way between x1 and x2 at x = (x1 + x2)/2 then it is easy to show
that linear interpolation gives the obvious result y = (y1 + y2)/2.

49

Figure 5: Linear interpolation only works well over intervals where the function is
straight.

But you must be careful when using this method that your points are close enough together
to give good values. In Fig. 11, for instance, the linear approximation to the curved function
represented by the dashed line “a” is pretty poor because the points x = 0 and x = 1 on
which this line is based are just too far apart. Adding a point in between at x = 0.5 gets us
the two-segment approximation “c” which is quite a bit better. Notice also that line “b” is
a pretty good approximation because the function doesn’t curve much.

This linear formula can also be used to extrapolate. A common way extrapolation is often
used is to find just one more function value beyond the end of a set of function pairs equally
spaced in x. If the last two function values in the array are fN−1 and fN , it is easy to show
that the formula above gives the simple rule

fN+1 = 2fN − fN−1

which was used in the Matlab code in Sec. 10.1
You must be careful here as well: segment “d” in Fig. 11 is the linear extrapolation of

segment ”b”, but because the function starts to curve again ”d” is a lousy approximation
unless x is quite close to x = 2.

11.2 Quadratic Interpolation and Extrapolation

Quadratic interpolation and extrapolation are more accurate than linear because the
quadratic polynomial ax2 + bx + c can more easily fit curved functions than the linear
polynomial ax + b. Consider Fig. 11.2. It shows two quadratic fits to the curved function.
The one marked “a” just uses the points x = 0, 1, 2 and is not very accurate because these
points are too far apart. But the approximation using x = 0, 0.5, 1, marked “b”, is really
quite good, much better than a two-segment linear fit using the same three points would be.

Unfortunately, the formulas for quadratic fitting are more difficult to derive. (The La-
grange interpolation formulas, which you can find in most elementary numerical analysis
books, give these formulas.) But for equally spaced data in x, Taylor’s theorem, coupled
with the approximations to the first and second derivatives discussed in the section on nu-
merical derivatives, make it easy to derive and use quadratic interpolation and extrapolation.

50

Figure 6: Quadratic interpolation follows the curves better if the curvature doesn’t
change sign.

I want to do it this way because it uses the approximate derivative formulas we used in Sec.
10.1 and illustrates a technique which is widely used in numerical analysis.

You may recall Taylor’s theorem that an approximation to the function f(x) near the
point x = a is given by

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + ...

Let’s use this approximation (ignoring all terms beyond the quadratic term in (x − a))
near a point (xn, fn) in an array of equally spaced x values. The grid spacing in x is h. An
approximation to Taylor’s theorem that uses numerical derivatives in this array is then given
by

f(x) ≈ fn +
fn+1 − fn−1

2h
(x− xn) +

fn−1 − 2fn + fn+1

2h2
(x− xn)2

This formula is very useful for getting function values that aren’t in the array. For instance,
it is easy to use this formula to obtain the interpolation approximation to f(xn + h/2)

fn+1/2 = −1

8
fn−1 +

3

4
fn +

3

8
fn+1

and also to find the quadratic extrapolation rule

fN+1 = 3fN − 3fN−1 + fN−2

11.3 Interpolating With polyfit and polyval

You can also use Matlab’s polynomial commands to build an interpolating polynomial. Here
is an example of how to use them to find a 5th-order polynomial fit to a crude representation
of the sine function.

%begin 11.3

51

% make the crude data set with dx too big for

% good accuracy

dx=pi/5;

x=0:dx:2*pi;

y=sin(x);

% make a 5th order polynomial fit to this data

p=polyfit(x,y,5);

% make a fine x-grid

xi=0:dx/20:2*pi;

% evaluate the fitting polynomial on the fine grid

yi=polyval(p,xi);

% and display the fit, the data, and the exact sine function

plot(x,y,’b*’,xi,yi,’r-’,xi,sin(xi),’c-’)

pause

% display the difference between the polynomial fit and

% the exact sine function

plot(xi,yi-sin(xi),’b-’)

%end 11.3

11.4 Matlab Commands Interp1 and Interp2

Matlab has its own interpolation routine interp1 which does the things discussed in this
section automatically. Suppose you have a set of data points {x, y} and you have a different
set of x-values {xi} for which you want to find the corresponding {yi} values by interpolating
in the {x, y} data set. You simply use any one of these three forms of the interp1 command:

yi=interp1(x,y,xi,’linear’)

yi=interp1(x,y,xi,’cubic’)

yi=interp1(x,y,xi,’spline’)

Here is an example of how each of these three types of interpolation works on a crude
data set representing the sine function.

%begin 11.4a

52

% make the crude data set with dx too big for

% good accuracy

dx=pi/5;

x=0:dx:2*pi;

y=sin(x);

% make a fine x-grid

xi=0:dx/20:2*pi;

% interpolate on the coarse grid to

% obtain the fine yi values

% linear interpolation

yi=interp1(x,y,xi,’linear’);

% plot the data and the interpolation

plot(x,y,’b-’,xi,yi,’r-’)

pause

% cubic interpolation

yi=interp1(x,y,xi,’cubic’);

% plot the data and the interpolation

plot(x,y,’b-’,xi,yi,’r-’)

pause

% spline interpolation

yi=interp1(x,y,xi,’spline’);

% plot the data and the interpolation

plot(x,y,’b-’,xi,yi,’r-’)

%end 11.4a

Matlab also knows how to do 2-dimensional interpolation on a data set of {x, y, z}
to find approximate values of z(x, y) at points {xi, yi} which don’t lie on the
data points {x, y}. You would use zi = interp2(x,y,z,xi,yi,’linear’), zi =

interp2(x,y,z,xi,yi,’cubic’), or zi = interp2(x,y,z,xi,yi,’spline’). This will
work fine for 1-dimensional data pairs {xi, yi}, but you might want to do this interpolation

53

for a whole bunch of points over a 2-d plane, then make a surface plot of the interpolated
function z(x, y). Here’s some code to do this and compare these three interpolation methods
(linear, cubic, and spline).

%begin 11.4b

x=-3:.4:3;

y=x;

% build the full 2-d grid for the crude x and y data

% and make a surface plot

[X,Y]=meshgrid(x,y);

Z=cos((X.^2+Y.^2)/2);

surf(X,Y,Z);

pause

%***

% now make a finer 2-d grid, interpolate linearly to

% build a finer z(x,y) and surface plot it.

% Note that because the interpolation is linear the mesh is finer

% but the crude corners are still there

%***

xf=-3:.1:3;

yf=xf;

[XF,YF]=meshgrid(xf,yf);

ZF=interp2(X,Y,Z,XF,YF,’linear’);

surf(XF,YF,ZF);

pause

%***

% Now use cubic interpolation to round the corners. Note that there is

% still trouble near the edge because these points only have data on one

% side to work with, so interpolation doesn’t work very well

%***

ZF=interp2(X,Y,Z,XF,YF,’cubic’);

surf(XF,YF,ZF);

pause

%***

% Now use spline interpolation to also round the corners and see how

% it is different from cubic. You should notice that it looks better,

% especially near the edges. Spline interpolation is often the

% best.

%***

54

ZF=interp2(X,Y,Z,XF,YF,’spline’);

surf(XF,YF,ZF);

pause

%end 11.4b

For more detail see Mastering Matlab 6, Chapter 19.

12 FFT (Fast Fourier Transform)

12.1 Fourier Analysis

Suppose that you went to a Junior High band concert with a tape recorder and made a
recording of Mary Had a Little Lamb. Your ear told you that were a whole lot of different
frequencies all piled on top of each other, but perhaps you would like to know exactly what
they were. You could display the signal on an oscilloscope, but all you would see is a bunch
of wiggles. What you really want is the spectrum: a plot of sound amplitude vs. frequency.
If this is what you want, Matlab can give it to you. It works like this.

12.2 Matlab’s FFT

First you need the data in digital form, so you have to run your recording through an analog-
to-digital converter to build a file of numerical signal values. Matlab will read such data files
in several ways, but the simplest to use with a time series would just be a text file with two
columns, one for time t and one for the signal f(t). Or perhaps it could just be the signal
in one column and you know what the time step τ is because you know the sampling rate.

If the 2-column file were called signal.dat and if it had two columns Matlab would read
it this way:

load signal.dat;

% the data is now stored in the variable signal as an Nx2 matrix

% unpack it into t and f(t) arrays

t=signal(:,1);

tau=t(2)-t(1);

f=signal(:,2);

Or if the file only contains one column of data and you know the interval between the
data points then Matlab would read it this way

load signal.dat;

f=signal;

N=length(f);

tau=.001; % tau is the time interval between the points in f

t=0:tau:(N-1)*tau;

Now you have a series of data points (tj, fj) equally spaced in time by time interval τ and
there are N of them covering a total time from t = 0 to t = T = (N − 1)τ . The Matlab

55

function fft will convert the array f(t) into an array g(ω) of amplitude vs. frequency, like
this

g=fft(f);

If you look at the array g you will find that it is full of complex numbers. It is complex
because it stores phase information as well as amplitude information, just like the Fourier
transform of mathematical analysis. For comparison, here is the formula for the analytic
Fourier transform followed by the set of sums (the sum is done for each value of discrete
frequency index k) that Matlab does with its fft command:

Fourier transform : F(ω) =
1

2π

∫ ∞

−∞
f(t)e−iωtdt

FFT, k = 0 : N− 1 : Fk+1 =
N−1∑
j=0

fj+1e
−i2πjk/N

Often we don’t want the phase information, so we work instead with the so-called power
spectrum, gotten this way:

P=abs(g).^2

Now we would like to plot P (ω) vs. angular frequency ω so we can see the values of the
frequencies in our signal. The spectrum P (ω) is ready to go, but to see what the frequencies
are, carefully compare the analytic and FFT formulas above, using j = tj/τ . We find that
the frequency interval from one point in P to the next is ∆f = 1/(Nτ) or ∆ω = 2π/(Nτ);
the lowest frequency is 0; and the highest frequency in the array is fmax = (N − 1)/(Nτ)
or ωmax = 2π(N − 1)/(Nτ). Hence, the frequency array f (in cycles per second) and the ω
array (in radians per second) would be built this way.

N=length(f);

% build f (Hertz)

df=1/(N*tau);

f=0:df:1/tau-df;

% build w (radians/sec)

dw=2*pi/(N*tau);

w=0:dw:2*pi/tau-dw;

An important thing to notice from the definition of the frequency step size ∆ω is that if
you want to distinguish between two frequencies ω1 and ω2 in a spectrum, then you must
have ∆ω << |ω2−ω1|. You can refine this resolution in frequency by choosing a large value
for the length of the time series, tfinal.

Another important thing to notice is that the maximum frequency you can detect is
ωmax ≈ 2π/τ , so if you want to see high frequencies you need a small time step, which

56

usually means lots of data points. (As you will see shortly the maximimum frequency you
can reliably detect is only half of this value due to aliasing.)

This puts the peaks at the right places, but you may be wondering what the huge vertical
scale means. The numbers are large for two reasons. (1) The FFT is not a Fourier transform,
but is instead a related sum (see above). To convert g, the sum from FFT, to something
closer to a Fourier integral you have to multiply it by the time step τ and divide by 2π,
as indicated in the definition of the Fourier transform above. This will reduce the size of
the FFT because τ/(2π) is typically a small number. (2) The Fourier transform just tends
to be large anyway because instead of amplitude, it is amplitude density (amplitude per
unit frequency). So if the signal is confined to a tiny range in ω, its density will be huge.
Consider, for instance, the Fourier transform of cos ω0t:

F(ω) =
1

2π

∫ ∞

−∞
cos ω0te

−iωtdt =
1

2
(δ(ω + ω0) + δ(ω − ω0))

Yes, those are delta-functions, and they are infinite (but they have finite area.) So when
Matlab does the FFT on periodic data, the result is a bunch of approximate delta functions,
which have large amplitudes. Because of this problem, most people just ignore the units on
the vertical axis of the FFT and concentrate on the relative heights of the peaks.

You will find that all data sets are not created equal when fft is applied to them.
Sometimes it will give you the answer really fast and sometimes it will be slow. You can
make it run at optimum speed if you always give it data sets with 64, 128, 1024, 16384, etc.
(powers of 2) data points in them. (Use help fft to see how to give fft a second argument
so powers of 2 are always used.)

Here is an example to show how this process works.

%begin 12.2

%***

% build a time series made up of 5 different frequencies

% that lasts for about 2000 seconds,

% then use fft to display the spectrum

%***

N=16384;tau=2000/N;

t=0:tau:(N-1)*tau;

% Make a signal consisting of angular frequencies

% w=1, 3, 3.5, 4, and 6

f=sin(t)+.5*sin(3*t)+.4*sin(3.5*t)+.7*sin(4*t)+.2*sin(6*t);

plot(t,f)

pause

% the time plot is very busy and not very helpful

% now take the fft and display the power spectrum

g=fft(f);

P=abs(g).^2;

57

dw=2*pi/(N*tau);

w=0:dw:2*pi/tau-dw;

plot(w,P)

xlabel(’\omega’)

ylabel(’P(\omega)’)

title(’Power Spectrum’)

pause

%***

% Notice that the right side of this plot is a mirror

% image of the left side. This is called aliasing

% and it makes the upper half of the spectrum be

% completely bogus--we should ignore it.

% we do this by using the axis command to only look

% at half of it

%***

axis([0 max(w)/2,0 max(P)]);

%end 12.2

Notice that the ω’s where there are peaks in the spectrum are right where they should
be: [1,3,3.5,4,6]. Also notice that the peak heights are qualitatively in the right relation.

Finally, you need to be aware of the limitations of this technique. As you can see from
the discussion above, the lowest frequency you can detect with the FFT is ∆ω = 2π/T .
So if you want see low frequency features in the spectrum you need data over a long time
T . As you can also see, the highest frequency that you can see without aliasing trouble is
ωmax = π/τ (this important limiting frequency is called the Nyquist frequency), so to see
high frequencies you need small time steps between data points. And to see both high and
low frequencies you just need lots and lots of points, maybe even more than your computer
memory will hold. So you need to design your data-taking carefully to capture the features
you want to see without breaking your computer.

For more details see online help or Mastering Matlab 6, Chapter 21.

13 Make Your Own Functions: Inline and M-files

As you use Matlab to solve problems you will probably want to build your own Matlab
functions. You can do this either by putting simple expressions into your code by using
Matlab’s inline command, or by defining function files with .m extensions called M-files.

58

13.1 Inline Functions

Matlab will let you define expressions inside a script for use as functions within that script
only. For instance, if you wanted to use repeated references to the function

f(x, y) =
sin (xy)

x2 + y2

you would use the following syntax (to make both a line plot in x with y = 2 and to make
a surface plot)

clear;close all;

f=inline(’sin(x.*y)./(x.^2+y.^2)’,’x’,’y’);

x=-8:.1:8;y=x;

plot(x,f(x,2))

[X,Y]=meshgrid(x,y);

surf(X,Y,f(X,Y))

The expression that defines the function is in the first string argument to inline and the
other string entries tell inline which argument goes in which input slot when you use the
function.

13.2 M-file Functions

These are subprograms stored in text files with .m extensions and are called M-files. A
function is different than a script in that the input parameters it needs are passed to it
with argument lists like Matlab commands (think about sin(x) or plot(x,y,’r-’)). Note,
however, that anything inside Matlab functions is invisible in the command window. So to
debug a function you need to use print and plot commands in the function file. Or you can
make it a stand-alone script by commenting out the function line so that its variables are
available at the Matlab command level.

You can also pass information in and out of functions by using Matlab’s global command
to declare certain variables to be visible in all Matlab routines in which the global command
appears. For instance, if you put the command

global a b c;

both in a script that calls derivs.m (see below) and in derivs.m itself, then if you give a,
b, and c values in the main script, they will also have these values inside derivs.m. This
construction will be especially useful when we use Matlab’s differential equation solving
routines in Chapter 16.

Rather than give you a syntax lecture I will just give you three useful functions as exam-
ples, with comments about how they work.

59

13.3 Derivative Function derivs.m

The first is a function called derivs.m which takes as input a function array y representing
the function y(x), and dx the x-spacing between function points in the array. It returns yp
and ypp, numerical approximations to the first and second derivatives, as discussed in the
section on numerical differentiation. First I will give you the script, then I will show you
how to use it.

%beginfunction derivs.m

function [yp,ypp]=derivs(y,dx)

%***

% This function numerically differentiates the array y which

% represents the function y(x) for x-data points equally spaced

% dx apart. The first and second derivatives are returned as

% the arrays yp and ypp which are the same length as the input

% array y. Either linear or quadratic extrapolation is used

% to load the derivatives at the endpoints. The user decides

% which to use by commenting out the undesired formula below.

%***

% load the first and second derivative arrays at the interior points

N=length(y);

yp(2:N-1)=(y(3:N)-y(1:N-2))/(2*dx);

ypp(2:N-1)=(y(3:N)-2*y(2:N-1)+y(1:N-2))/(dx^2);

% now use either linear or quadratic extrapolation to load the

% derivatives at the endpoints

% linear

%yp(1)=2*yp(2)-yp(3);yp(N)=2*yp(N-1)-yp(N-2);

%ypp(1)=2*ypp(2)-ypp(3);ypp(N)=2*ypp(N-1)-ypp(N-2);

% quadratic

yp(1)=3*yp(2)-3*yp(3)+yp(4);yp(N)=3*yp(N-1)-3*yp(N-2)+yp(N-3);

ypp(1)=3*ypp(2)-3*ypp(3)+ypp(4);ypp(N)=3*ypp(N-1)-3*ypp(N-2)+ypp(N-3);

%end derivs.m

To use this function first build an array of function values:

%begin 13.3

x=0:.01:10;

y=cos(x);

60

% Then, since the function returns two arrays in the form

% [yp,ypp], you would use it this way:

[fp,fpp]=derivs(y,.01);

% look at the approximate derivatives

plot(x,fp,’r-’,x,fpp,’b-’)

%end 13.3

Note that I didn’t have to call them [yp,ypp] when I used them outside the function in the
main script. This is because all variables inside functions are local to these programs and
Matlab doesn’t even know about them in the command window.

Sorry, I lied–I need to bore you with some syntax because everybody gets confused about
the first line in a function program. The syntax of the first line is this

function output=name(input)

The word function is required. output is the thing the function passes back to whomever
called it and its name is local to the function. If it is a single variable name then the code
in the function needs to assign that variable name a value, an array of values, or a matrix of
values. If the function returns more than one such result then the names of these results are
put in square brackets, as in derivs.m. The function returns these results to the assigned
variable(s), as in the derivs example:

[fp,fpp]=derivs(y,dx);

The keyword name in the function command line above should be the name of the .m file that
contains the function code. (You can use other names, but you might drive yourself nuts if
you do.) input is the argument list of the function. When the function program is called
the arguments passed in and the arguments used in the function must match in number and
type.

13.4 Definite Integral Function defint.m

This function uses the midpoint rule to integrate a function over a chosen interval using a
chosen number of integration points. The function to be integrated must be coded in the
sub function contained at the end of the function file defint.m (Note: Matlab’s quad and
especially quadl do the same thing, only better. This is just a simple example to show you
how to program.)

%beginfunction defint.m

function s=defint(a,b,N)

61

%***

% this function uses the midpoint rule on N subintervals

% to calculate the integral from a to b of the function

% defined in the sub function at the bottom of this

% function

% load dx and build the midpoint rule x-values

%***

dx=(b-a)/N;

x=a+.5*dx:dx:b-.5*dx;

%***

% use the function f(x) defined in the sub function below

% to obtain the midpoint approximation to the integral and assign

% the result to s

%***

s=sum(f(x))*dx;

% here’s the sub function

function y=f(x)

% define the function f(x) and assign it to y

y=cos(x);

%end defint.m

To use it, first edit the file defint.m so that the sub function at the bottom of the file
contains the function you want to integrate. Then give defint.m the integration limits (say
a = 0 and b = 1) and the number of points N = 1000 to use in the midpoint rule like this

defint(0,1,1000)

% or

s=defint(0,1,1000);

In the first case the approximate integral prints on the screen; in the second it doesn’t print
but is assigned to s.

13.5 Indefinite Integral Function indefint.m

This function takes an array of function values in y and an x-spacing dx and returns an
approximate indefinite integral function g(x) =

∫ x
a y(x′)dx′. The function values must start

62

at x = a and be defined at the edges of the subintervals of size h rather than at the centers
as in the midpoint method. Because of this we have to use the trapezoid rule instead of the
midpoint rule. The trapezoid rule says to use as the height of the rectangle on the interval
of width h the average of the function values on the edges of the interval:

∫ x+h

x
y(x′)dx′ ≈ y(x) + y(x + h)

2
h

Note that this function does exactly the same thing as Matlab’s function cumtrapz.

%beginfunction indefint.m

function g=indefint(y,dx)

%***

% returns the indefinite integral of the function

% represented by the array y. y(1) is assumed to

% be y(a), the function value at the lower limit of the

% integration. The function values are assumed to be

% values at the edges of the subintervals rather than

% the midpoint values. Hence, we have to use the

% trapezoid rule instead of the midpoint rule:

%

% integral(y(x)) from x to x+dx is (y(x)+y(x+dx))/2*dx

% The answer is returned as an array of values defined

% at the same points as y

%***

% the first value of g(x) is zero because at this first value

% x is at the lower limit so the integral is zero

g(1)=0;

N=length(y);

% step across each subinterval and use the trapezoid area

% rule to find each successive addition to the indefinite

% integral

for n=2:N

% Trapezoid rule

g(n)=g(n-1)+(y(n-1)+y(n))*.5*dx;

end

%end indefint.m

63

Take a minute now and use derivs.m and indefint.m to make overlaid plots of the
function f(x) = cos xe−x, its first and second derivatives, and its indefinite integral F (x) =∫ x
0 f(x′)dx′ on the interval x = [0, 3].

14 Fitting Functions to Data

A common problem that physicists often encounter is to find the best fit of a function (with
a few variable parameters) to a set of data points. If you are fitting to a polynomial, then
the easiest way to do this is with polyfit. But if you want to fit to a sine, a cosine, an
exponential, a log, etc., then there is no simple command available. Pay attention to this
section; it is useful.

Matlab has a very nice multidimensional minimizer routine called fminsearch that will
do such general fits if you give it a half-decent initial guess for the fitting parameters. To
see how to use fminsearch generally you can use online help, but here I will just show you
how to use it for function fitting.

Suppose we have a set of data points (xj, yj) (perhaps read in with Matlab’s load com-
mand as discussed in the Fast Fourier Transform section) and a proposed fitting function of
the form y = f(x, a1, a2, a3, ...). For example, we could try to fit to an exponential function
with two adjustable parameters a1 and a2 as is done in the example in leastsq.m below:

f(x, a1, a2) = a1e
a2x .

Or you could fit to a cubic polynomial in x2 with four adjustable parameters a1, a2, a3, a4

with this f :
f(x, a1, a2, a3, a4) = a1 + a2x

2 + a3x
4 + a4x

6

which is what polyfit does.
In any case, what we want to do is choose the parameters (a1, a2, a3, ...) in such a way that

the sum of the squares of the differences between the function and the data is minimized, or
in mathematical notation we want to minimize the quantity

S =
N∑

j=1

(f(xj)− yj)
2

The first thing you need to do is to make a Matlab M-file called leastsq.m which evaluates
the least-squares sum you are trying to minimize. It needs access to your fitting function
f(x, a), which is stored in the Matlab M-file funcfit.m. Here are examples of these two
files.

This function leastsq.m is the one that you give to fminsearch. It allows fminsearch

to talk to your fitting function funcfit.m by calculating S from the (x, y) data and the an’s;
it looks like this:

%beginfunction leastsq.m

function s=leastsq(a,x,y)

64

%***

% leastsq can be passed to fminsearch to do a

% non-linear least squares fit of the function

% funcfit(a,x) to the data set (x,y).

% funcfit.m is built by the user as described here

% a is a vector of variable parameters; x and y

% are the arrays of data points

%***

% find s, the sum of the squares of the differences

% between the fitting function and the data

s=sum((y-funcfit(a,x)).^2);

%end leastsq.m

%beginfunction funcfit.m

function f=funcfit(a,x)

%***

% this function evaluates the fitting

% function f(x,a1,a2,a3,...) to be fit to

% data. It is called by leastsq.

% a is a vector of variable fitting parameters a1, a2, ...

% that are used in the function and x is a

% vector of x-values

% the function returns a vector f=f(x,a1,a2,...)

%***

% sample exponential function with 2 variable

% parameters

f = a(1)*exp(a(2)*x);

%end funcfit

With these two functions built and sitting in your Matlab directory we are ready to do the
fit. Here is a piece of code that allows you to enter an initial guess for the fitting parameters,
plot the initial guess against the data, then tell fminsearch to do the least squares fit.
The behavior of fminsearch can be controlled by setting options with Matlab’s optimset

command. In the code below this command is used to set the Matlab variable TolX, which
tells fminsearch to keep refining the parameter search until the parameters are determined
to a relative accuracy of TolX. Finally, it plots the best fit against the data. I suggest you

65

give it a name (perhaps datafit.m) and save it for future use. The data needs to be sitting
in the file data.fil as two columns of (x, y) pairs, like this

0.0 1.10

0.2 1.20

0.4 1.52

0.6 1.84

0.8 2.20

1.0 2.70

Let’s try to fit this data to the function f(x) = a1 exp(a2x).
OK–here’s the fitting code; I call it datafit.m

%begin 14

%***

% Uses fminsearch to least squares fit

% a function defined in funcfit.m to

% data read in from data.fil

%***

clear;close

% read the data file and load x and y

load data.fil;

x=data(:,1);y=data(:,2);

% set up for the plot of the fitting function

xmin=min(x);

xmax=max(x);

npts=1001;

dx=(xmax-xmin)/(npts-1);

xplot=xmin:dx:xmax;

% set ifit to 0 and don’t continue on to the fit until

% the user sets it to 1

ifit=0;

while ifit==0

disp(’ Enter an initial guess for the function ’)

a=input(’parameters [a1,a2,...] in vector form [...]- ’)

% plot the data and the initial function guess

yplot=funcfit(a,xplot);

66

plot(x,y,’b*’,xplot,yplot,’r-’)

xlabel(’x’)

ylabel(’y’)

title(’ Initial Guess and Data’)

ifit=input(’ Enter 0 to try again, 1 to try to fit - ’)

end

%***

% Do the fit with the option TolX set; fminsearch will adjust a

% until each of its elements is determined to within TolX.

% If you think fminsearch could do better than it did, reduce TolX.

%***

option=optimset(’TolX’,1e-5);

a=fminsearch(@leastsq,a,option,x,y)

% plot the data and the final function fit

yplot=funcfit(a,xplot);

% Plot the final fit and the data

plot(x,y,’b*’,xplot,yplot,’r-’)

xlabel(’x’)

ylabel(’y’)

title(’ Final Fit and Data’)

%end 14

It’s a little painful to have to make three files to get this job done, but I suggest you learn
how to use fminsearch this way. It comes up all the time.

15 Systems of Nonlinear Equations

Matlab’s fminsearch can also be used to solve systems of nonlinear equations. Consider the
following pretty-impossible-looking set of three equations in three unknowns (x, y, z).

sin (xy) + exp (−xz)− 0.95908 = 0 (4)

z
√

x2 + y2 − 6.70820 = 0 (5)

tan (y/x) + cos z + 3.17503 = 0 (6)

67

The way to talk fminsearch into solving this set is to invent a scalar function S(x, y, z)
which consists of the sum of the squares of the three functions given above:

S(x, y, z) = [sin (xy) + exp (−xz)− 0.95908]2 +[
z
√

x2 + y2 − 6.70820
]2

+ [tan (y/x) + cos z + 3.17503]2

If you look at S(x, y, z) for a bit you will see that (1) it is always positive, (2) its smallest
possible value is zero, and (3) if you can somehow find values of (x, y, z) that make it zero,
then you have solved the system of three equations.

Note, however, that fminsearch is a minimizer, not a zero finder. So it may find a local
minimum of S(x, y, z) which does not satisfy S = 0. If it fails in this way you need to (1)
know about it and (2) make another initial guess so fminsearch can take another crack at
the problem.

Here are two pieces of Matlab code that will use fminsearch to solve systems like this.
The first one calls fminsearch and the second one, which is a Matlab function (eqsystem.m)
contains the equations to be solved.

%begin 15

%***

% Uses fminsearch to look for solutions to the

% nonlinear system of equations defined in the

% file eqsystem.m

%***

clear;

itry=0;

while itry ==0

disp(’ Enter an initial guess for the solution’)

x=input(’of the system of equations in the form [x1,x2,...] - ’)

% evaluate the scalar function S(x1,x2,...) so the

% user can see how good the guess is

s=eqsystem(x);

fprintf(’ S(x1,x2,...) = %g \n’,s)

itry=input(’ Enter 0 to try again, 1 to try to solve - ’)

end

x=fminsearch(@eqsystem,x)

68

s=eqsystem(x);

fprintf(’ Final value of S(x1,x2,...) = %g \n’,s)

disp(’ Make sure it is close to zero’)

%end 15

%beginfunction eqsystem.m

function s=eqsystem(xn)

% nonlinear system of equations routine for

% use with zerofinder and fminsearch

x=xn(1);y=xn(2);z=xn(3);

Eq1 = sin(x*y)+exp(-x*z)-0.95908;

Eq2 = z*sqrt(x^2+y^2) -6.70820;

Eq3 = tan(y/x)+cos(z)+3.17503;

s=Eq1^2+Eq2^2+Eq3^2;

%end eqsystem.m

When you solve this system and you are asked for an initial guess, try something near
(0.8,1.8,2.5).

16 Ordinary Differential Equations

The standard way to write a differential equation, or a system of differential equations, in
numerical work is as a first order system, like this:

dx

dt
= F(x)

where x is a vector of unknown functions of the parameter t (often time in physics problems)
and where F(x) is a vector-valued function of a vector argument. This makes perfect sense
to a mathematician, but physicists usually need examples. Here are a couple.

16.1 Decay of a Radioactive Sample

If there are N atoms of an unstable element with an exponential decay rate of γ then the
differential equation describing how N decreases in time is

dN

dt
= −γN

which is just a single first order differential equation.

69

16.2 Simple Harmonic Oscillator

The equation of motion of a mass m bouncing in a weightless environment on a spring with
spring constant k is

d2x

dt2
= −ω2

0x where ω0 =

√
k

m

This is a second order differential equation rather than a first order system, so we need to
change its form. This is done simply by using position x(t) and velocity v(t) = dx/dt as two
unknown functions of time. The first order set consists of the definition of v(t) in terms of
x(t) and the second order differential equation with d2x/dt2 replaced by dv/dt:

dx

dt
= v (7)

dv

dt
= −ω2

0x (8)

It is always possible to use this trick of defining new functions in terms of derivatives of other
functions to convert a high order differential equation to a first order set.

So let’s assume that we have a first order set. How can we solve it? Maple will often
give you an analytic expression for the solution; Matlab can only give you an array which
is a numerical approximation. But Matlab will find this approximation very quickly and
you have control over how it does it, so it is often more efficient to use Matlab for hard
differential equations than to use Maple.

I am going to show you two methods. The first is simple, intuitive, and inaccurate. The
second is a little more complicated, not terribly intuitive, but pretty accurate. There are
many ways to numerically solve differential equations and the two I will show you are rather
crude; Matlab has its own solvers (discussed in Sec. 16.5) which are better, but you will
learn a bit about the ideas they are based on by studying these two methods.

16.3 Euler’s Method

The first method is called Euler’s Method (say “Oiler’s Method”), and even though it’s
pretty bad, it is the basis for many better methods. Here’s the idea.

First, quit thinking about time as a continuously flowing quantity. Instead we will seek
the solution at specific times tn separated by small time steps τ . Hence, instead of x(t) we
will try to find xn = x(tn). The hope is that as we make τ smaller and smaller we will come
closer and closer to the true solution.

Since we are going to use discrete times and since the initial conditions tell us where to
start, what we need is a rule that tells us how to advance from xn to xn+1. To find this rule
let’s approximate the differential equation dx/dt = F this way

xn+1 − xn

τ
= F(xn, tn)

In doing this we are assuming that our solution is represented as an array of values of both
t and x, which is the best that Matlab can do. If we already know xn, the solution at the
present time tn, then the equation above can give us x one time step into the future at time
tn+1 = tn + τ :

xn+1 = xn + F(xn, tn)τ

70

This is a little abstract, so let’s use it to approximately solve the harmonic oscillator
equation. For this case Matlab would use for x the vector [x,v] and for F the vector
[v,-w∧2*x]. (Stare at the harmonic oscillator equation given above as a first order system
until you can see that this is true.) Here’s a script that uses this method to solve the
harmonic oscillator equation.

%begin 16.3

% Use Euler’s method to solve the harmonic oscillator equation

clear;close all;

% set the angular frequency

w=1;

% decide how long to follow the motion, 10 periods in this case

tfinal=2*pi/w*10;

% choose the number of time steps to take

N=input(’ Enter the number of time steps to take - ’)

% t=zeros(1,N+1);x=zeros(1,N+1);v=zeros(1,N+1); % uncomment this line to make

% the code run faster

% calculate the time step

tau=tfinal/N;

% initialize the time array

t(1)=0;

% set the initial values of position and velocity

x(1)=1;v(1)=0;

% Do Euler’s method for N time steps

for n=1:N

t(n+1)=n*tau;

x(n+1)=x(n) + v(n)*tau;

v(n+1)=v(n) - w^2*x(n)*tau;

end

% plot the result and compare it with the exact solution

% which is x(t)=cos(w*t)

plot(t,=,’r-’,t,cos(w*t),’b-’)

%end 16.3

When you copy this code into a file and run it you will see that even if you take 1000 steps,
the solution is not very good. No matter how small tau is, if you run long enough Euler’s
method will blow up.

Also note that if you try to run this script for many steps (N = 50, 000, for instance) it

71

Figure 7: Runge-Kutta anticipates curving and beats Euler.

runs slow. The reason is that as you keep making the t, x, and v arrays longer and longer in
the loop Matlab has to keep making new space for them in memory. But if you define them
ahead of time to be big enough (see the commented lines just after the line N = input... in
the code above), the arrays are defined to be big enough before you start the loop and no
time will be wasted increasing the array sizes. Run this script again with this line of code
uncommented and watch how fast it runs, even if you choose N = 500, 000.

16.4 Second-order Runge-Kutta

Here is a method which is still quite simple, but works a lot better than Euler. But it is, in
fact, just a modification of Euler. If you go back and look at how we approximated dx/dt
in Euler’s method you can see one thing that’s wrong with it: the derivative is not centered
in time:

xn+1 − xn

τ
= F(xn, tn)

The left side of this equation is a good approximation to the derivative halfway between tn
and tn+1, but the right side is evaluated at tn. This mismatch is one reason why Euler is so
bad.

Runge-Kutta attempts to solve this centering problem by what looks like a cheat: (1) Do
an Euler step, but only by τ/2 so that we have an approximation to [x,v] at tn+1/2. These
half-step predictions will be called [xhalf,vhalf]. (2) Then evaluate the function F(x, t)
at these predicted values to center the derivative

xn+1 − xn

τ
= F(xn+1/2, tn+1/2)

This is the simplest example of a predictor-corrector method and it works lots better than
Euler, as you can see by running the code given below. (Step (1) above is the predictor; step
(2) is the corrector.)

You can see this difference between Runge-Kutta and Euler in Fig. 7, where the upward
curve of the solution makes Euler miss below, while Runge-Kutta’s half-way-out correction
to the slope allows it to do a much better job.

72

%begin 16.4

% Runge-Kutta second order approximate solution to the harmonic oscillator

clear;close all;

% set the angular frequency

w=1;

% decide how long to follow the motion, 10 periods in this case

tfinal=2*pi/w*10;

% choose the number of time steps to take

N=input(’ Enter the number of time steps to take - ’)

% calculate the time step

tau=tfinal/N;

% initialize the time array

t(1)=0;

% set the initial values of position and velocity

x(1)=1;v(1)=0;

% Do Runge-Kutta for N time steps

for n=1:N

t(n+1)=n*tau;

% Predictor step .5*tau into the future

xhalf=x(n) + v(n)*tau*.5;

vhalf=v(n) - w^2*x(n)*tau*.5;

% Corrector step

x(n+1)=x(n) + vhalf*tau;

v(n+1)=v(n) - w^2*xhalf*tau;

end

% plot the result and compare it with the exact solution

% x(t)=cos(w*t) and v(t)=-w*sin(w*t)

plot(t,x,’r-’,t,cos(w*t),’b-’)

%end 16.4

16.5 Matlab’s Differential Equation Solvers

Matlab also has its own differential equation solvers and they are more accurate than the
simple methods discussed in Secs. 16.3 and 16.4. Here is a list borrowed from Mastering

73

Matlab 6 of these Matlab functions and what they do.

ode23:
An explicit, one-step Runge-Kutta low-order (2-3) solver. (Like the second-order Runge-

Kutta method predictor-corrector discussed here in Sec. 16.4.) Suitable for problems that
exhibit mild stiffness, problems where lower accuracy is acceptable, or problems where F(t,x)
is not smooth (e.g. discontinuous).

ode45:
An explicit, one-step Runge-Kutta medium-order (4-5) solver. Suitable for non-stiff prob-

lems that require moderate accuracy. This is typically the first solver to try on a new problem.

ode113:
A multi-step Adams-Bashforth-Moulton PECE solver of varying order (1-13). Suitable for

non-stiff problems that require moderate to high accuracy involving problems where F(t,x)
is expensive to compute. Not suitable for problems where F(t,x) is discontinuous or has
discontinuous lower-order derivatives.

ode23s:
An implicit, one-step modified Rosenbrock solver of order 2. Suitable for stiff problems

where lower accuracy is acceptable, or where F(t,x) is discontinuous. Stiff problems are those
in which there are several different rates of change involved whose sizes differ by several orders
of magnitude, or more.

ode15s:
An implicit, multi-step solver of varying order (1-5). Suitable for stiff problems that re-

quire moderate accuracy. This is typically the solver to try if ode45 fails or is too inefficient.

Below you will find two sample scripts odetest and rhs which can use any of these
Matlab solvers to solve and plot the solution of the harmonic oscillator equation. Note that
they all work in this way:

(1) You define the right-hand side function for your set of first order differential equations
in the M-file rhs.m.

(2) You choose the beginning and ending times to pass into the Matlab ode function.
(3) You choose the initial column vector y representing the initial conditions for your

problem.
(4) You choose the ode solver control options by using Matlab’s odeset function.
(5) You ask Matlab to give you a column of times t and a matrix of y-values by calling

one of the ode solvers like this

[t,y]=ode45(@rhs,[tstart,tfinal],y,options);

(6) This command returns a column vector t of the discrete times between tstart and
tfinal which ode45 chose to make the solution be as accurate as you asked it to be when
you used odeset. You will also receive a matrix y with as many columns as you have
unknowns in your set of ode’s and with as many rows as you have times in t. And if you
make the required accuracy smaller, you will receive more data points. Important note: they

74

will not be equally spaced in time. If you just want the solution at certain pre-set times [tn],
just replace the 2-element array [tstart,tfinal with an array of the times that you want:
[t1,t2,t3,t4,...,tN]. For example, you could replace [tstart,tfinal] with the equally
spaced array of times tstart:dt:tfinal. If the position x is called y(1) in your set of
equations then you can obtain an array containing these positions by extracting the first
column, like this

x=y(:,1);

Once you have extracted the different components of your solution from y, i.e., x, vx, z,
vz, etc., you can use Matlab’s plotting and data analysis capabilities to slice and dice the
data anyway you want.

Oh, and what if you really wanted the data to be equally spaced in time because, for
example, you wanted to send the solution off to fft to find a spectrum? Just use interp1

to interpolate the output of ode45 onto an equally spaced time grid and away you go.
Here’s the sample differential equation solving code.

odetest.m (main script):

%begin 16.5

%***

% ordinary differential equation solver using

% Matlab’s ode solvers and the M-file rhs.m to

% specify F(t,y)

%***

clear;close all;

% declare the oscillator frequency to be global and set it

global w0;

w0=1;

% set the initial and final times

tstart=0;tfinal=200;

% set the initial conditions in the y0 column vector

y0=zeros(2,1);

y0(1)=.1; % initial position

y0(2)=0; % initial velocity

% set the solve options

options=odeset(’RelTol’,1e-8);

% do the solve

[t,y]=ode45(@rhs,[tstart,tfinal],y0,options);

% unload the solution that comes back in y into x and v arrays

x=y(:,1);v=y(:,2);

75

%***

% because Matlab’s ode solvers don’t use equally spaced

% time steps, and because you might want equal spacing,

% here’s how you convert from Matlab’s unequally-spaced (t,x,v)

% to equally spaced data (te,xe,ve)

%***

N=length(t);

taue=(tfinal-tstart)/(N-1);

te=tstart + (0:taue:(N-1)*taue) ;

te=te’; % convert te to a column vector, to match t

xe=interp1(t,x,te,’spline’);

ve=interp1(t,v,te,’spline’);

%***

% Note that you could have obtained equally-spaced points by

% telling ode45 to give you the solutions at times you specify.

% For instance, suppose you wanted 1024 points between t=0 and

% t=200. You could build them like this (the code is commented):

% N=1024;

% taue=(tfinal-tstart)/(N-1);

% te=tstart + (0:taue:(N-1)*taue) ;

% [t,y]=ode45(@rhs,te,y,options);

% xe=y(:,1);ve=y(:,2);

%***

% plot the position vs. time

plot(te,xe)

pause

% make a "phase-space" plot of v vs. x

plot(xe,ve)

%end 16.5

rhs.m (Matlab function)

%beginfunction rhs.m

%***

% right-hand side function for Matlab’s ordinary

76

% differential equation solvers: simple harmonic

% oscillator example:

% x=y(1) v=y(2)

% dx dv

% -- = v ; -- = -w^2*x

% dt dt

%***

function F=rhs(t,y)

% declare the frequency to be global so its value

% set in the main script can be used here

global w0;

% make the column vector F filled

% with zeros

F=zeros(length(y),1);

% build the elements of F

% the equation dx/dt=v means that F(1)=y(2)

F(1)=y(2);

% the equation dv/dt=-w0^2*x means that F(2)=-w0^2*y(1)

F(2)=-w0^2*y(1);

%end rhs.m

16.6 Event Finding with Matlab’s Differential Equation Solvers

Something you will want to do with differential equation solvers is to find times and variable
values when certain events occur. For instance, suppose we are solving the simple harmonic
oscillator and we want to know when the position of the oscillator goes through zero with
positive velocity, as well as when the velocity is zero and decreasing. I have good news and
bad news. The good news is that Matlab knows a way to do this. The bad news is that the
way is a little involved. If you try to figure out how it works from online help you will be
confused for a while, so I suggest that you use the example files given below. Read them
carefully because I have put all of the explanations about how things work in the codes as
comments. The main file is eventode.m and its right-hand side function is eventrhs.m.
There is also an additional M-file to control the event-finding called events.m.

eventode.m (main script):

%begin 16.6

77

% eventode: example of event finding in Matlab’s ode solvers

clear;close;

dt=.01; % set the time step

y0=[0;1]; % put initial conditions in the [x;vx] column vector

% turn the eventfinder on by specifying the name of the M-file

% where the event information will be processed (events.m)

options=odeset(’Events’,@events,’RelTol’,1e-6);

% call ode45 with event finding on and a parameter omega passed in

omega=1;

[t,y,te,ye,ie]=ode45(@eventrhs,[0,20],y0,options,omega);

%***

% Here’s what the output from the ode solver means:

% t: array of solution times

% y: solution vector, y(:,1) is x(t), y(:,2) is vx(t)

% te: array of event times

% ye: solution vector at the event times in te

% ie: index for the event which occurred, useful when you

% have an array of events you are watching instead of

% just a single type of event. In this example ie=1

% for the x=0 crossings, with x increasing, and ie=2

% for the vx=0 crossings, with vx decreasing.

% separate the x=0 events from the vx=0 events

% by loading x1 and v1 with the x-positions and

% v-velocities when x=0 and by loading x2 and v2

% with the positions and velocities when v=0

%***

n1=0;n2=0;

for m=1:length(ie)

if ie(m)==1

n1=n1+1;

% load event 1: x,v,t

x1(n1)=ye(m,1);v1(n1)=ye(m,2);t1(n1)=te(m);

end

% load event 2: x,v,t

if ie(m)==2

78

n2=n2+1;

x2(n2)=ye(m,1);v2(n2)=ye(m,2);t2(n2)=te(m);

end

end

% plot the harmonic oscillator position vs time

plot(t,y(:,1),’g-’)

hold on

% plot the x=0 crossings with red asterisks and the v=0

% crossings with blue asterisks

plot(t1,x1,’r*’)

plot(t2,x2,’b*’)

%end 16.6

eventrhs.m (Matlab function to compute [dy(1)/dt;dy(2)/dt]

%beginfunction eventrhs.m

%--

function rhs=eventrhs(t,y,omega)

% right-hand side for the simple harmonic oscillator

% make sure rhs is a column vector

rhs(1,1)=y(2);

rhs(2,1)=-omega^2*y(1);

%--

%end eventrhs.m

events.m (Matlab function to control event finding by Matlab’s ode solvers)

%beginfunction events.m

%---

function [value,isterminal,direction] = events(t,y,omega)

%***

% Locate the time and velocity when x=0 and x is increasing

% value array: same dimension as the solution y. An event is defined

% by having some combination of the variables be zero.

% Since value has the same size as y (2 in this case) we

% can event find on two conditions. Should be a column vector

79

%***

value(1,1) = y(1); % load value(1) with the expression which,

% when it is zero, defines the event, y(1)=0 in this case.

value(2,1)=y(2); % load value(2) with a second event condition, vx=0

% (y(2)=0) in this case. If you don’t want a second

% event just set value(2)=1 so it is never 0.

isterminal = [0 ; 0]; % this vector tells the integrator whether

% to stop or not when the event occurs.

% 1 means stop, 0 means keep going. isterminal

% must have the same length as y (2 in this case).

% Should be a column vector

direction = [1 ; -1]; % direction modifier on the event:

% 1 means value=0 and is increasing;

% -1 means value=0 and is decreasing;

% 0 means value is zero and you don’t care

% whether it is increasing or decreasing.

% direction must have the same length as y.

% should be a column vector

%--

%end events.m

17 Publication Quality Plots

With a bit of coaxing Matlab will make plots that are suitable for inclusion in a thesis or for
publication in a journal. The material in this section is included courtesy of Tom Jenkins.

The default settings which Matlab uses to plot functions are usually OK for looking at
plots on a computer screen, but they are generally pretty bad for generating graphics for
articles to be published in a journal. Getting around this problem is the purpose of this
section. First let’s make a simple Matlab plot of the sine function.

clear;close all;

dx=.01;

x=0:dx:2*pi;

f=sin(x);

plot(x,f,’r-’)

80

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

This figure has a couple of problems. The axes Matlab chose on which to plot the function
aren’t necessarily the ones we would pick, the line width in the plot is too small, making the
plot look “spidery”, and the lettering is too small. Fortunately, Matlab allows us to make
better choices in these matters.

The way to control how Matlab handles these parameters, and almost any other param-
eters we might be interested in, is by using the set utility in Matlab. This allows us to
specify how we want our plot to look, instead of letting Matlab use its own default settings.
Here’s an example.

%begin 17a

clear;close all;

dx=.01;

x=0:dx:2*pi;

f=sin(x);

plot(x,f,’r-’,’LineWidth’,2.5)

aa=gca;

set(aa,’XLimMode’,’manual’,’YLimMode’,’manual’,...

’Xlim’,[0 2*pi],’Ylim’,[-1 1],’FontSize’,20,’LineWidth’,2.5,...

’XTick’,[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6],...

’YTick’,[-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1])

xlabel(’\theta’)

ylabel(’sin (\theta)’)

title(’sin (\theta) vs. \theta’)

%end 17a

Execute this code and see what the plot looks like.
Although this structure is (of course) more complicated than the original plot, it does

make a graph that’s suitable for publication. Here is the same code, but in more detail
(comments added).

%begin 17b

clear;close all;

% Defines the function we’re going to plot

81

dx=.01;

x=0:dx:2*pi;

f=sin(x);

%***

% Make the plot. The LineWidth command tells Matlab how many ‘points’

% wide to make each line. The default is 0.5, so we’ve made the lines

% five times thicker than normal.

%***

plot(x,f,’r-’,’LineWidth’,2.5)

%***

% Get the handle to the current axes. Matlab uses ‘handles’ (a kind

% of label) to refer to each set of axes. Matlab’s default axes appear

% on the plot at this point, so we have to figure out the handle to

% this set of axes so we can change its properties. The ‘gca’ command

% stands for Get Current Axes and returns a number (the label Matlab

% uses to refer to the axes); we store this number in the variable ‘aa’.

% This way we can change the properties of ‘aa’ and Matlab will know

% what we’re talking about.

%***

aa=gca;

%***

% Change the properties of these axes using the ‘set’ command.

% The syntax is

% set(aa,’PropertyName’,’PropertyValue’).

% I have used multiple PropertyNames and PropertyValues in the same

% command, but this is the basic idea. It tells Matlab to take the

% object with handle aa and set its PropertyName to PropertyValue.

% Note that PropertyNames must be enclosed in single forward quotes.

% ’XLimMode’ and ’YLimMode’ can be set to ’auto’ or ’manual’. Note

% that these settings are strings, so they need to be enclosed in

% single forward quotes as well. If these PropertyNames are set

% to ’auto’ Matlab sets its own limits for the left, right, top,

% and bottom edges of the graph. If they are set to ’manual’

% we can use the ’XLim’ and ’YLim’ commands, followed by vectors

% telling where we want the edges of the graph to be located.

% ’FontSize’ sets the size of the font to be used in the xlabel,

% ylabel, zlabel, and title commands for the plot.

% ’LineWidth’ sets the width of the lines the axes (not the plot)

% are drawn with. Its format is similar to the earlier ’LineWidth’

82

% command referring to the plot itself.

% ’XTick’ and ’YTick’ refer to the tick marks along the x and y

% axes respectively. Their arguments are vectors; Matlab will

% put a tick mark at each vector element along that axis. (Too many

% tick marks makes the plot illegible, so be careful).

%***

set(aa,’XLimMode’,’manual’,’YLimMode’,’manual’,...

’Xlim’,[0 2*pi],’Ylim’,[-1 1],’FontSize’,20,’LineWidth’,2.5,...

’XTick’,[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6],...

’YTick’,[-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1])

xlabel(’\theta’)

ylabel(’sin (\theta)’)

title(’sin (\theta) vs. \theta’)

%end 17b

Here is the revised plot.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ

si
n

(θ
)

sin (θ) vs. θ

83

Index

Accuracy, 15 digits, 11
Add and subtract, 14
And, 39
Ans, 5
Array editor, 8
Array, first or second half, 19
Arrays, 12
Assigning values, 12
Axis Command, 22
Axis equal, 22
Break, 40
Case sensitive, 11
Clear, 6
Clear the screen, clc, 16
Colon command, :, 18
Colon command–rows and columns, 33
Column, selecting with :, 33
Comma between commands, 19
Comment lines (%), 6
Complex arithmetic, 15
Continue long lines, 6
Contour plots, 24
Conv, 35
Cputime for timing, 38
Cross product, 30
Cumtrapz, Matlab Integrator, 47
Curves, 3-D, 20
Data types, 11
Dblquad, Matlab Integrator, 47
Deconv, 35
Definite integral function, 61
Derivative function, 60
Derivative of an array, 45
Derivatives, numerical, 44
Desktop, arranging, 8
Determinant, 33
Differential equations, numerical, 69
Division, ./, 14
Dot product, 30
Eigenvalues and eigenvectors, 34
Else, Elseif, 39
End of an array, 12
Equation, solve, 43
Euler’s method, 70

Event finding, odes, 77
Extension, .m, 6
Extrapolation, 49
Factorial, 38
FFT, 55
Figure windows, 21
File output, 17
Fitting, 64
Fitting, polynomial, 36
For, 37
Format long e, etc., 11
Fourier series, 27
Fourier transform, 55
Fprintf, 16
Function fitting, 64
Functions, 16
Functions, inline, 59
Functions, M-file, 59
Function syntax, 61
Functions, your own, 58
Fzero, equation solver, 43
Gamma, 38
Global variables, 59
Greek letters, 22
Grid, cell center, 18
Grid, cell edge, 18
Harmonic oscillator, 70
Help, lookfor, 6
Hermitian conjugate, 32
Hold on, off, 20
Housekeeping functions, 16
Identity matrix, 32
If, 39
Indefinite integral function, 62
Inline functions, 59
Inline functions with quadl, 48
Input, 13
Integrals, numerical, 46
Integration, Matlab’s Cumtrapz, 47
Integration, Matlab’s Quad, 47
Interp1, 52
Interp2, 53
Interpolating: polyfit and polyval, 51
Interpolation, 2-dimensions, 53

84

Interpolation, 49
Inverse of a matrix, 31
Last array element, end, 12
Latex and Greek letters, 22
LaTex symbols in sprintf, 20
Leastsq.m, 64
Lettering plots, 22
Linear algebra, 30
Load a file, 13
Logarithm, natural: log, 16
Logic, 39
Log plots, 21
Long lines, continue, 6
Lookfor, help, 6
Loops, 37
Magnitude of a vector, 33
Make your own functions, 58
Mathematical functions, 15
Matlab’s ode solvers, 73
Matrices, 12
Matrix elements, getting, 12
Max and min, 31
Meshgrid, 23
M-file functions, 59
Multiple plots, 21
Multiplication, .*, 14
Multiplication, *, 14
Natural log: log, 16
Ndgrid, 23
Nonlinear equations, 67
Norm, 33
Not, 39
Ode113, 74
Ode15s, 74
Ode23, 74
Ode23s, 74
Ode45, 74
Odes, event finding, 77
Ones matrix, 32
Optimset, options, 65
Or, 39
Output, fprintf, 16
Overlaid plots, 20
Pause, 6
Physics 318, 27
Pi, 11
Plot3, 20

Plot: equally scaled axes, 22
Plots, logarithmic, 21
Plots, publication quality, 80
Plotting, contour and surface, 24
Plotting, xy, 18
Poly, 35
Polyder, 35
Polyfit, 36
Polynomials, 34
Polyval, 36
Power, raise to, .∧, 14
Predictor-corrector, 72
Previous commands, 5
Printing, suppress, ;, 7
Quad, Matlab Integrator, 47
Quiver plots, 28
Radians mode, 5
Random matrix, 32
Random numbers, 32
:, repeat command, 18
Roots, polynomial, 35
Round a number, round, 16
Row, selecting with :, 33
Runge-Kutta, 72
Running scripts, 6
Script files (.m), 5
Secant method, 40
Second order ode to first order set, 70
Solve a linear system, 30
Solve a nonlinear system, 67
Solving an equation, 43
Space curves, 20
Sprintf, 20
Sprintf, LaTex symbols, 20
Strings, 13
Subfunctions, 61
Subscripts, superscripts, 22
Sum an array, 33
;, suppress printing, 7
Surface plots, 24
Synthetic division, 35
Systems of equations, 67
Taylor’s theorem, 51
Tests, logical, 39
Text, on plots, 22
Timing with cpu time, 38
TolX, fminsearch option, 65

85

Transpose, 32
Vector Field Plots, 28
While, 39
Workspace window, 8
Write data to a string: sprintf, 20
Writing a file, 17
Xlim, 22
Ylim, 22
Zero matrix, 32
Zoom in and out, 30

86

