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Abstract

The outlook to apply the highly energetic biogas from anaerobic digestion into fuel cells will result in a significantly higher

electrical efficiency and can contribute to an increase of renewable energy production. The practical bottleneck is the fuel cell
poisoning caused by several gaseous trace compounds like hydrogen sulfide and ammonia. Hence artificial neural networks were
developed to predict these trace compounds. The experiments concluded that ammonia in biogas can indeed be present up to
93 ppm. Hydrogen sulfide and ammonia concentrations in biogas were modelled successfully using the MATLAB Neural Network

Toolbox. A script was developed which made it easy to search for the best neural network models’ input/output-parameters, settings
and architectures. The models were predicting the trace compounds, even under dynamical conditions. The resulted determination
coefficients (R2) were for hydrogen sulfide 0.91 and ammonia 0.83. Several model predictive control tool strategies were introduced

which showed the potential to foresee, control, reduce or even avoid the presence of the trace compounds.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Anaerobic digestion

Anaerobic digestion is a world-wide applied principle
to stabilise municipal sewage sludge, treat organic
wastes, products and waste-waters from industries,
households and farms. Thereby a highly energetic
biogas is produced which is used in combined heat
and power generators. The advanced application of
biogas into fuel cells will result in a significantly higher
electrical efficiency (NETL, 2000) and can contribute to
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an increase in renewable energy production. However,
besides methane and carbon dioxide, biogas can contain
by-products like hydrogen sulfide, ammonia, halogens
and non-methane organics, which will reduce the fuel
cells life time dramatically (NREL, 2001). Therefore, the
prediction of these trace compounds is necessary so the
right precautions can be taken. Applying suitable
models in a predictive control tool can result in a biogas
were compounds are controlled, reduced or even
avoided. Holubar et al. (2002) demonstrated this kind
of application for methane composition and biogas
production optimisation.

1.2. Hydrogen sulfide

Hydrogen sulfide (H2S) is the end product of the
reduction of sulfate and other sulphur containing
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compounds in anaerobic digestion. Concentrations in
biogas up to 5.7 vol.% H2S were reported (Braun,
1982). Hydrogen sulfide is one of the main toxicants
because of the frequent presence in biogas and toxicity
for all common fuel cells (NETL, 2000). At this moment
no effective tool exists to prevent hydrogen sulfide
production during the anaerobic treatment of sulfate-
rich wastewater (Hulshoff Pol et al., 2001). Even the in
practice applied measures of sulfide precipitation with
iron salts (Stachowske, 1991) or air injection (Chambers
and Potter, 2002) are not effective enough to reach the
fuel cells tolerances of a few ppm H2S (NETL, 2000).
From this point of view a pre-treatment technology, like
a bio-scrubber combined with a chemical cleaning, is
a good possibility to upgrade the biogas quality to fuel
cells tolerances. Therefore, predictive model based
control will be necessary so H2S in biogas production
is regulated and pre-treatment functioning is assured.

1.3. Ammonia

Ammonia (NH3) is the end product of ammonifica-
tion processes in anaerobic digestion. As a component in
biogas it has not been researched until now. Still there is
no literature available which constitutively demonstrates
the presence of ammonia in biogas. Only Schomaker
(2000) noted that 450 ppm ammonia was measured at
a biogas plant. Nevertheless, from the Henry constant of
ammonia (Stumm and Morgan, 1996) and possible
reactor conditions it was easily calculated that, when gas
transfer limitation is excluded, ammonia should be
present in the biogas phase. Some fuel cells tolerate
ammonia as a fuel, but other fuel cells like the Proton
Exchange Membrane Fuel Cell (PEMFC) (Austrian
Energy Agency, 2004; FAL, 2004) or the Phosphoric
Acid Fuel Cell (PAFC) (Fuel Cells, 2000, 2004), are
certainly not resistant to ammonia (NETL, 2000). For
these type of fuel cells research of the ammonia
production and prediction in biogas is required.

1.4. Modelling

Basically, there are two ways in which a model can be
established: it can be derived in a deductive manner
using laws of nature, called mechanistic modelling, or it
can be inferred from a set of data collected during
a practical experiment with the system, called black-box
modelling. There is considerable valuable development
and application in mechanistic modelling of anaerobic
digestion processes (Batstone and Keller, 2003; Fedor-
ovich et al., 2003) based on the standard Anaerobic
Digestion Model No. 1 (Batstone et al., 2002) as well as
in black-box modelling with, for example, artificial
neural networks (Holubar et al., 2003). Both methods
are based on a different philosophy and have their
specific characteristics. When circumstances or processes
occur which are not understood well enough or
parameter determination is unpractical and required,
there will be a distinctive advantage for black-box
modelling (Strik et al., 2004). This is especially the case
in the complex processes of anaerobic digestion where
the number of parameters is high and variable. So far
there is very little information available about gas–liquid
mass transfer coefficients which are required for de-
scribing the processes of biogas formation (Merkel and
Krauth, 1999). Also there is inadequate information
available about H2S and NH3 toxicity and adaptation to
toxicity of these compounds (Speece, 1996). These
considerations justify the use of black-box modelling
methods. Black-box models like the artificial neural
networks are very attractive. They do not require prior
knowledge about the structure and relationships that
exist between important variables. Moreover, their
learning abilities make them adaptive to system changes
(Zupan and Gasteiger, 1999). Up to now, there is an
interesting amount of applications of neural network
models in the field of environmental engineering (Steyer
et al., 2000; Holubar et al., 2002, 2003) and much
potential for application in the whole environmental
sector.

In this research the two compounds, H2S and NH3,
have been produced in biogas and the processes
modelled with artificial neural networks. Therefore, the
MATLAB Neural Network Toolbox was used, because
it is flexible and easy to apply. The prediction of the
models under dynamical circumstances will be presented
and discussed. Finally an outlook will be given of the
models’ application in predictive control tools.

2. Materials and methods

2.1. Artificial neural network background
and modelling

A neural network is by definition: a system of simple
processing elements, called neurons, which are con-
nected to a network by a set of weights (Fig. 1). The
network is determined by the architecture of the
network, the magnitude of the weights and the process-
ing element’s mode of operation. The neuron is

example of a neural network example of 1 neuron

output

L1 L2 p*w1
p*w2
p*w3
p*w4 b

fΣ a
input

Fig. 1. Scheme of a full connected neural network with an input of 4

elements, 2 layers (L1 with 3 neurons and L2 with 1 neuron), 1 output

element and the example of a single neuron (Hagan et al., 1996).
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a processing element that takes a number of inputs ( p),
weights them (w), sums them up, adds a bias (b) and uses
the result as the argument for a singular valued function,
the transfer function ( f ), which results in the neurons
output (a). The most common networks are constructed
by ordering the neurons in layers, letting each neuron in
a layer take as input only the outputs of neurons in the
previous layer or external inputs. To determine the
weight values, a set of examples is needed of the output
relation to the inputs. Therefore, a set of data was
produced describing the whole operating range of the
system. All important parameters which were measured
and used as input in the neural network modelling of the
trace compounds are shown in Table 1.

The knowledge of the neural network is encoded in
the values of its weights. The task of determining the
weights from these examples is called training and is
basically a conventional estimation problem. For this
purpose, the back-propagation strategy has become the
most frequently, and here, used method which tends to
give reasonable answers when presented with inputs that
they have never seen. Standard back-propagation is
a gradient descent in which the network weights are
moved along the negative of the gradient of the
performance function. The term back-propagation
refers to the manner in which the gradient is computed
for non-linear multiple-layer networks. The typical
performance function that is used for training feed-
forward neural networks is the mean sum of squares of
the network errors between the network outputs and the
target outputs (Zupan and Gasteiger, 1999). In this
work the batch gradient decent with momentum
algorithm (Demuth and Beale, 2000) was used as the
training function. This and other training functions gave
good results in earlier neural network modelling of
anaerobic processes (Domnanovich et al., 2004).

After the networks training the model needs to be
validated with a representative set of data which was not

Table 1

Parameters which were measured for use as input in the neural

network modelling of the outputs H2S and NH3 for the next day

(t C 1)

Input for predicting H2S tC 1 Input for predicting NH3 tC 1

Sulfate loading rate

[g SO4-S m
�3 d�1]

Nitrogen loading rate

[g Nm�3 d�1]

H2S in biogas [ppm] NH3 in biogas [ppm]

Total sulfides in reactor

[mg S2� l�1]

Ammonia in reactor

[mgN-NH3 l
�1]

Biogas-productivity

[m3 Biogas m�3 d�1]

Ammonium in reactor

[mg N-NH4
C l�1]

pH Total inorganic nitrogen in

reactor [mgN-NH4
CCNH3 l

�1]

Organic loading rate

[kg CODm�3 d�1]

Biogas-productivity

[m3 Biogas m�3 d�1]

pH

Organic loading rate

[kg CODm�3 d�1]
used during the training of the model. Since the weight
initialisation at the start of the modelling was a random
process and was influencing greatly the results (data not
shown), 50 repeats of each different model were done.
The performance of the neural network model was
evaluated with the root mean square error (RMSE) and
determination coefficient (R2) between the modelled
output and measures of the training and validation data
set. When the RMSE is at the minimum and R2 is high,
R0.8, a model can be judged as very good (Kasabov,
1998). Secondly, was the comparison between the
modelled output and the measured output heuristically
reviewed. These methods were occasionally used in
neural network model validation (Norgaard et al., 1999;
Hagan et al., 1996). Before the best model was found,
a trial and error process was followed where different
inputs and inputs-combinations were tested. By graph-
ical representation of all results, the best input
combination was selected. Hereby all reasonable combi-
nations of input parameters were validated. Finally the
architecture of the neural network model was optimised
by applying different amounts (1–10) of hidden neurons.
When the increase of hidden neurons did not improve
the model anymore, the model with the smallest amount
and maximum performance was chosen as the best
model.

2.2. Software

For development of the neural network models the
Neural Network Toolbox 5 and MATLAB 6.5 (The
Mathworks Inc. USA) were used. A MATLAB script
was written which loaded the data file, trained and
validated the networks and saved the models architec-
ture and performance in a file ready for use in Microsoft
Excel. The input and output data were normalised and
de-normalised before and after the actual application in
the network. The MATLAB script is available free of
cost from the corresponding author. The PC with
a 800 MHz processor and 512 Mb intern memory took
about 1 min for the processing of one neural network
model. The Neural Network Toolbox offers a broad
variety of parameters for neural network development
which can be chosen flexibly. The toolbox is provided
with a practical user guide by Demuth and Beale (2000).

2.3. Reactors set-up and feed composition

To gain data for model training and validation, two
20 l lab-scale anaerobic Completely Stirred Tank
Reactors (CSTRs) were operated at 60 �C (Fig. 2) with
a hydraulic retention time of 40 days. One reactor
(R-H2S) for the hydrogen sulfide production and one
reactor (R-NH3) for the ammonia production. The
process control software Labview 6.5 (National Instru-
ments, Austria) was used for monitoring and controlling
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Fig. 2. Scheme of the anaerobic continuous stirred tank reactor.
the laboratory reactors. All devices used were connected
to Field-point modules (National Instruments, Austria),
and via an RS232 interface to the controlling PC. The
reactor was mixed with the magnetic stirrer MR1 (IKA
labortechnik, Austria). Reactor temperature was main-
tained at the set-point temperature by a heating band of
type WB 185 (Winkler, Germany) and a Pt-100. Two
peristaltic pumps (Verder, Germany) were used as feed-
and circulation pumps. The reactors were fed with a pH
adjusted (pHZ 7.5) medium containing (mg l�1):
MgSO4�7H2O (100), CaCl2 (10), H3BO4 (0.2), FeCl2�
4H20 (8), ZnCl2 (0.2), MnCl2�4H2O (2), CuCl2�2H2O
(0.152), (NH4)6Mo7O24�7H2O (0.2), CoCl2�6H2O (8),
NiCl2�6H2O (0.568), Na2SeO3�5H2O (0.656), EDTA (4),
AlCl3�6H2O (0.36), Resazurine (2) and HCl 37%
(0.008 ml l�1). In the medium of R-NH3 also
FeCl3�6H2O (600–3000) was present. In the feed of R-
H2S were added KH2PO4, flour Type W480 and peptone
from casein in different amounts in a ratio of 1:25:1 (g).
In the feed of R-NH3 were added NH4Cl, KH2PO4,
flour Type W480, peptone from casein and starch in
different amounts in a ratio of 5.15:1.5:40:10:10 (g).
Feeding was done automatically and split over the day
into 5 or 10 smaller charges. The amount of feed was
weighted with a Satorius Industry weight device. The
feed was continuously mixed (IKAMAG REO, Austria)
and cooled in a refrigerator at about 4 �C. The
thermophilic digesting sludge was achieved from the
waste water treatment plant of Altenmarkt (Germany).

2.4. Analytic

The chemical oxygen demand (COD) and total
nitrogen (Tot-N) of the feed were analysed using,
respectively LCK114 and LCK338 test-kit (Dr. Lange,
Austria). Measurement of the amount of produced
biogas was done by a liquid-displacement counter
according to Veiga et al. (1990). Ammonium and
ammonia in the reactor were determined with a gas-
sensitive electrode NH500/2 (WTW, Germany) and pH
measurement with a Sensolyt-SE electrode (WTW,
Germany). Total sulphides in the reactor were
determined colorimetrically after reaction with N,N-
dimethyl-p-phenylenediamine oxalate according to the
method described by Trüper and Schlegel (1964). The
hydrogen sulfide and ammonia in biogas were measured
daily with Dräger tubes (Dräger, Germany). An extra
online biogas ammonia sensor (Iras, Germany) was
temporarily installed to gain insight into the ammonia
dynamics. Acetic acid, propion acid and total volatile
fatty acids in the reactor were measured with a Fourier
Transform Infrared spectrometer using a ZnSe Crystal
(Perkin Elmer, Austria).
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Fig. 3. Experimental course of R-H2S.
3. Results and discussion

3.1. Experimental course and H2S and NH3

production

Both reactors were fed with a varying feed to gain the
necessary dynamics in the data. To produce data which
were distributed over the whole operating range, the
COD/SO4-S ratio, organic- and sulfate-loading rates
varied for R-H2S over time. Fig. 3 shows the experimen-
tal course and some of the data production of R-H2S.
The high sulfate-loading rates were reached by adding
Na2SO4 to the reactor. As a result, the H2S increased
during the next days and gradually decreased afterwards.

For R-NH3 the feed composition was constant but
the amount varied during the experiment. Fig. 4 shows
the experimental course and data production of R-NH3.
In the period from day 46 to 61, a lye pump controlled
and increased the pH in the reactor by dosing
20G 10 ml of 6 M NaOH per day. This resulted in
the increase of free ammonia and consequentially the
increase of ammonia in the biogas. On day 88 the
maximum concentration of 93 ppm of NH3 was
measured. The volatile fatty acids concentrations in
the reactor (data not shown), which are indicators for
reactor unbalance caused by overload or toxicity, were
quite fluctuating. However, the biogas production (data
not shown) was not severely affected.

3.2. Modelling

Several thousands of models were trained and
validated until the best input parameters and best fitting
input structure, architecture and MATLAB Neural
Network Toolbox settings for the models were
developed (Table 2). With the inclusion of the sulfate
and organic loading rate tC 1 (value of the next day) in
the H2S model, it will be possible to embed the model in
an optimisation algorithm whereby the parameters can
be adjusted until a specific H2S for the next day is
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Table 2

Structure, architecture and settings of the best found models predicting, respectively, H2S and NH3

H2S model NH3 model

Inputsa Sulfate loading rate [g SO4-S m�3 d�1]

t� 1, t, tC 1

Total nitrogen loading rate [g Nm�3 d�1] tC 1

Organic loading rate [kg CODm�3 d�1] t, tC 1 Organic loading rate [kg CODm�3 d�1] tC 1

H2S in biogas [ppm] t� 1, t NH3 in biogas [ppm] t

Biogas-productivity [m3 Biogas m�3 d�1] t

pH t� 2, t� 1, t

Ammonia in reactor [mgN-NH3 l
�1] t

Output Hydrogen sulfide in biogas [ppm] tC 1 Ammonia in biogas [ppm] tC 1

Layers 2 2

Hidden neurons 5 7

Transfer functions Tansig/purelin Tansig/purelin

Train function Traingdm (batch gradient descent

with momentum algorithm)

Traingdm (batch gradient descent with

momentum algorithm)

Learning rate 0.001 0.001

Train epochs 5000 5000

Performance goal 0.02 0.02

Minimum performance gradient 1! 10�8 1! 10�8

Momentum constant 0.9 0.9

Maximum performance inc 1.04 1.04

Number of train data 100 131

Number of validated data 35 27

a t� 2: value of two days before; t� 1: value of one day before; t: value of present day; tC 1: value of the next day.
calculated. The same principle will be possible with the
NH3 model, where the total nitrogen and organic
loading rate can be adjusted for predicting the NH3 in
the biogas for the next day. In these ways a biogas plant
operator can use the models in a predictive control tool.
The results of the models’ prediction were shown in
Figs. 5 and 6. The one step ahead prediction of H2S was
even good when the H2S increased fast (see e.g. days: 73,
82 and 94). The applied sampling time distance of one
day was enough to describe all process dynamics. The
increase of H2S (after a sulfate pulse) took mostly
several days. From data of the online ammonia sensor
(data not shown) it was seen that the ammonia dynamics
were captured with the one daily measurement.

The training determination coefficients (R2) of both
the models show that the neural networks learned the
relation between input and output good. The validate R2
of both models was even better which means that the
generalisation capacity of the models was very good.
That the training R2 was worse than the validate R2 was
most probable due to noise in the training data. The
RMSEs of the models were minimal and smaller than
6% of the maximum measured value. Both models were,
from a heuristic point of view, following the dynamics in
the system well and therefore suitable for doing
predictions even under dynamical circumstances.

4. Conclusions

This paper confirmed the expectation that ammonia
can be present in biogas in a range up to at least 93 ppm.
Both researched trace compounds in biogas from
anaerobic digestion were modelled successfully using
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the MATLAB Neural Network Toolbox. By applying
the developed MATLAB script it was possible to search
for the best model in an easy manner. H2S and NH3

were predicted very well and the developed neural
network models are therefore suitable in predictive
control tools as was previously proposed by Steyer et al.
(2000). With these kinds of tools an operator is able to
take every day, in a few minutes time, the right
precautions. For example, when a specific high nitrogen
containing feed is offered the operator can calculate how
much of this can be co-digested without producing
ammonia in the biogas. The same counts for a high
sulfate containing feed, where the operator can decide
how the feed profile should be changed or otherwise it
can be decided to add more iron salts so produced
sulfide is precipitated. Another application way is
possible when a pre-treatment technology for the H2S
cleaning is installed. The model can then be applied to
predict and optimise the H2S concentration so the pre-
treatment will function optimally. Thus, with the pro-
posed model based applications it will be possible to
foresee, control, reduce or even avoid the production of
the toxic trace compounds for fuel cells, H2S and NH3.
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