
Journal of Computational and Applied Mathematics 178 (2005) 215–234

www.elsevier.com/locate/cam

Orthogonal polynomials (in Matlab)
Walter Gautschi∗

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1389, USA

Received 26 September 2003; received in revised form 23 March 2004

Abstract

A suite of Matlab programs has been developed as part of the book “Orthogonal Polynomials: Computation and
Approximation” Oxford University Press, Oxford, 2004, by Gautschi. The package contains routines for generating
orthogonal polynomials as well as routines dealing with applications. In this paper, a brief review of the first part
of the package is given, dealing with procedures for generating the three-term recurrence relation for orthogonal
polynomials and more general recurrence relations for Sobolev orthogonal polynomials. Moment-based methods
and discretization methods, and their implementation in Matlab, are among the principal topics discussed.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Orthogonal polynomials; Recurrence relations; Matlab

1. Introduction

The analytic theory of orthogonal polynomials is well documented in a number of treatises; for classical
orthogonal polynomials on the real line as well as on the circle, see[25], for those on the real line also
see[24]. General orthogonal polynomials are dealt with in[5] and more recently in[22], especially with
regard tonth-root asymptotics. The text[3] is rooted in continued fraction theory and recurrence relations.
While the theoryof orthogonal polynomials iswell developed, thepracticeof orthogonal polynomials—

constructive, computational, and software aspects—is still in an early stage of development. An effort in
this direction is being made by the author’s book[13] and the accompanying packageOPQ: a Matlab
Suite of Programs for Generating Orthogonal Polynomials and Related Quadrature Rules, which can be
found at the URLhttp://www.cs.purdue.edu/archives/2002/wxg/codes .

∗ Tel.: +1 765 494 1995; fax: +1 765 494 0739.
E-mail address:wxg@cs.purdue.edu(W. Gautschi).

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.03.029

http://www.elsevier.com/locate/cam
http://www.cs.purdue.edu/archives/2002/wxg/codes
mailto:wxg@cs.purdue.edu

216 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

The purpose of the work in[13] is twofold: (i) to present various procedures for generating the coef-
ficients of the recurrence relations satisfied by orthogonal polynomials on the real line and by Sobolev
orthogonal polynomials; and (ii) to discuss selected applications of these recurrence relations, including
numerical quadrature, least squares and moment-preserving spline approximation, and the summation of
slowly convergent series. All is to be implemented in the form of Matlab scripts. In the present article
we wish to give a brief account of the first part of[13]: the generation of recurrence coefficients for
orthogonal polynomials and related Matlab programs. All Matlab routines mentioned in this paper, and
many others, are downloadable individually from the aboveWeb site.

2. Orthogonal polynomials

Webeginwith some basic facts about orthogonal polynomials on the real line and introduce appropriate
notation as we go along. Suppose d� is a positive measure supported on an interval (or a set of disjoint
intervals) on the real line such that all moments�r =

∫
R
t r d�(t) exist and are finite. Then the inner product

(p, q)d� =
∫

R

p(t)q(t)d�(t) (1)

is well defined for any polynomialsp, qand gives rise to a unique system�r (t)= t r +· · · , r =0,1,2, . . . ,
of monic orthogonal polynomials

�k(·) = �k(·;d�) : (�k, �
)d�

{ = 0, k �=
,

> 0, k =
.
(2)

It is well known that they satisfy a three-term recurrence relation

�k+1(t) = (t − �k)�k(t) − �k�k−1(t), k = 0,1,2, . . . ,

�−1(t) = 0, �0(t) = 1, (3)

where�k = �k(d�) and�k =�k(d�) are real resp. positive constants which depend on the measure d�. For
convenience, we define�0 = ∫

R
d�(t). Associated with the recurrence relation (3) is theJacobi matrix

J(d�) =




�0
√

�1 0√
�1 �1

√
�2√

�2 �2
. . .

. . .
. . .

0




, (4)

a symmetric tridiagonal matrix of infinite order. Its leading principal minor matrix of ordern will be
denoted by

Jn(d�) = J(d�)[1:n,1:n]. (5)

As already indicated in Section 1, the basic problem is this: for a given measure d� and for given integer
n�1, generate the firstn coefficients�k(d�), k = 0,1,2, . . . , n − 1, and the firstn coefficients�k(d�),
k = 0,1,2, . . . , n − 1, that is, the Jacobi matrixJn(d�) of ordern and�0.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 217

Table 1
Classical weight functions

Name w(t) Supported on

Jacobi (1− t)�(1+ t)�, �> − 1, �> − 1 [−1,1]
Laguerre t�e−t , �> − 1 [0,∞]
Hermite |t |2�e−t2, 2�> − 1 [−∞,∞]

Fig. 1. The arrayab of recurrence coefficients.

2.1. Recurrence coefficients

Frequently, the measure d� is absolutely continuous, i.e., representable in the form

d�(t) = w(t)dt, (6)

wherew is a nonnegative function, calledweight function, integrable on the support of d� and not
identically zero. Among the best-known weight functions are the classical weight functions, the more
important of which are listed inTable 1.
For these, the recurrence coefficients are explicitly known. InMatlab, the firstN recurrence coefficients

are always stored in anN × 2 arrayab as shown inFig. 1.
The Matlab command to compute them has the syntaxab = r _name(parameters), wherenameiden-

tifies the weight function, andparametersis a list of parameters includingN. Thus, for example, in the
case of the Jacobi weight function, the Matlab command is

ab = r_jacobi(N, a, b).

Here,a, b are the Jacobi parameters (denoted by� and � in Table 1). If � = �, it suffices to write
ab = r _jacobi(N,a) , and if� = � = 0, to writeab = r _jacobi(N) .
Demo#1: The first 10 recurrence coefficients for the Jacobi polynomials with parameters�=−1

2, �= 3
2.

218 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

The Matlab command, followed by the output, is shown in the box below.

Classical weight functions are not the only ones for which the recurrence coefficients are explicitly
known. For example, the logistic weight function

w(t) = e−t

(1+ e−t)2
, t ∈ R,

of interest in statistics, has all coefficients�k =0 (by symmetry) and�0=1,�k =k4�2/(4k2−1), k�1 [3,
Eq. (8.7) where� = 0, x = t/�]. The corresponding Matlab routine isr _logistic.m . Other examples
are measures occurring in the diatomic linear chain model, which are supported on two disjoint intervals,
cf. [10].
Many nonclassical weight functions and measures, however, are such that their recurrence relations

are not explicitly known. In these cases, numerical techniques must be used, some of which are to be
described in the next four subsections.

2.2. Modified Chebyshev algorithm

In principle, the desired recurrence coefficients can be computed fromwell-known formulae expressing
them in terms of Hankel-type determinants involving the moments�r of the given measure d�. The
problems with this are: excessive complexity and, more seriously, extreme numerical instability. To avoid
these problems, one can attempt to usemodified moments

mr =
∫

R

pr(t)d�(t), r = 0,1,2, . . . , (7)

wherepr are monic polynomials of degreer “close” in some sense to the desired polynomials�r . In
particular, they are assumed to also satisfy a three-term recurrence relation

pk+1(t) = (t − ak)pk(t) − bkpk−1(t), k = 0,1,2, . . . ,

p−1(t) = 0, p0(t) = 1, (8)

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 219

but this time withknowncoefficientsak ∈ R, bk �0. (We allow for zero coefficientsbk, sinceak = bk =0
yields the ordinary moments.) There is then a unique map

R2n �→ R2n : [mk]2n−1
k=0 �→ [�k, �k]n−1

k=0 (9)

that takes the first 2nmodifiedmoments into the desiredn recurrence coefficients�k and�k.An algorithm
implementing this map has been developed by Sack and Donovan[21], and in more definitive form, by
Wheeler[26]. In the case of ordinary moments (ak =bk =0), it reduces to an algorithm already developed
(for discrete measures) by Chebyshev[2]. We called it, therefore, themodified Chebyshev algorithm. It
is implemented in the Matlab procedure

ab = chebyshev(N,mom, abm),

whereN is the numbern in (9),momthe 1× 2N array of modified moments, andabm the(2N − 1) × 2
array of the first 2N − 1 recurrence coefficientsak, bk in (8). If abm is omitted from the list of input
parameters, the routine assumesabm= zeros(2*N-1,2) , that is, ordinary moments.
In view of the highly ill-conditioned nature of map (9) whenmr = �r are ordinary moments, the

conditioning of the modified moment map is an important question that has been studied already in
[7], and more definitively in[9]. There are examples where the map is entirely well conditioned, but
also others, especially when the measure d� has unbounded support, in which the map is almost as ill
conditioned as for ordinary moments.
Demo#2: The weight function

w(t) = [(1− �2t2)(1− t2)]−1/2 on [−1,1], 0��<1,

of the “elliptic orthogonal polynomials”.
Since the weight function reduces to the Chebyshev weight function when� = 0, it seems natural to

use as modified moments those relative to the monic Chebyshev polynomials,

m0 =
∫ 1

−1
w(t)dt, mk = 1

2k−1

∫ 1

−1
Tk(t)w(t)dt, k�1.

Their computation, though not trivial by any means, can be accomplished in a very stable fashion[9,
Example 3.3]. The first 2N of them are generated in the Matlab routinemm_ell.m . The following box
shows the Matlab script required to generate elliptic polynomials.

220 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

The routine works well even for�2 quite close to 1, as is shown by the output below (displayed only
partially) forN= 40,om2= .999.

All coefficients are accurate to machine precision.

2.3. Discrete Stieltjes and Lanczos algorithm

Partly in preparation for the next subsection, we now consider adiscrete N-point measure

d�N(t) =
N∑

k=1
wk�(t − xk), wk >0, (10)

where� is the Dirac delta function. Thus, the measure is supported onN distinct pointsxk on the real
axis, where it has positive jumpswk. The corresponding inner product is a finite sum,

(p, q)N =
∫

R

p(t)q(t)d�N(t) =
N∑

k=1
wkp(xk)q(xk). (11)

There is now only a finite number,N, of recurrence coefficients�k = �k(d�N), �k = �k(d�N), which can
be computed by either of two algorithms, one mentioned briefly by Stieltjes[23], and a more recent one
based on ideas of Lanczos[18].
The former combines Darboux’s formulae for the recurrence coefficients,

�k = (t�k, �k)N

(�k, �k)N
, k = 0,1, . . . , n − 1,

�k = (�k, �k)N

(�k−1, �k−1)N
, k = 1,2, . . . , n − 1,

(12)

with the recurrence relation (3). In (12), the�k are the (as yet unknown) discrete orthogonal polynomials
�k(· ;d�N). Stieltjes’s Procedureconsists in starting withk = 0 and successively increasingk by 1 until
k = n− 1. Thus, whenk = 0, we have�0= 1, so that�0 can be computed by the top relation in (12) with
k = 0 and�0 by �0 = ∑N

k=1wk. With �0, �0 at hand, we can go into (3) withk = 0 and compute�1(xk)
for all the support pointsxk. This then in turn allows us to reapply (12) withk = 1 and compute�1 and
�1. Going back to (3) withk = 1, we compute�2(xk), whereupon (12) withk = 2 yields�2, �2, etc. In
this manner we continue until�n−1, �n−1 have been computed. Heren�N .

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 221

Fig. 2. The arrayxw of support points and weights.

The second algorithm is based on the existence of an orthogonal similarity transformation

QT




1
√
w1

√
w2 · · · √

wN√
w1 x1 0 · · · 0√
w2 0 x2 · · · 0
...

...
...

. . .
...√

wN 0 0 · · · xN


 Q =




1
√

�0 0 · · · 0√
�0 �0

√
�1 · · · 0

0
√

�1 �1 · · · 0
...

...
...

. . .
...

0 0 0 · · · �N−1




,

whereQ is an orthogonal matrix of orderN + 1 having the first coordinate vectore1 ∈ RN+1 as its
first column.Lanczos’s Algorithm[18] carries out this transformation and thus, since thewk andxk are
given, determines the recurrence coefficients�k, �k. The algorithm, unfortunately, is unstable, but can be
stabilized by using ideas of Rutishauser[20]; see[16].
In Matlab, the two algorithms are implemented in the routines

ab = stieltjes(n, xw)

ab = lanczos(n, xw)

}
n�N,

wherexw is theN × 2 array of the support points and weights of the given discrete measure (10); see
Fig. 2.
The first routine is generally the one to be preferred, although asn approachesN, it may gradually

become unstable. If such is the case, and values ofn nearN are indeed required, the second routine is
preferable but is considerably more time-consuming than the first.

2.4. Discretization methods

The basic idea, first advanced in[7] and more fully developed in[9], is very simple: One first approx-
imates the given measure d� by a discreteN-point measure,

d�(t) ≈ d�N(t), (13)

typically by applying some appropriate quadrature scheme. Thereafter, the desired recurrence coefficients
are approximated by those of the discrete measure,

�k(d�) ≈ �k(d�N),

�k(d�) ≈ �k(d�N). (14)

If necessary, the integerN is increased to improve the approximation. For eachN, the approximate
recurrence coefficients on the right of (14) are computed by one of the methods described in Section 2.3.

222 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

To come up with a good discretization (13) that yields fast convergence asN → ∞ may require skill
and inventiveness on the part of the user. But if implemented intelligently, the method is one of the most
effective ones for generating orthogonal polynomials.
The seemingly complicated constructions of multicomponent discretizations to be described further

on will first be motivated by a simple example.

Example 2.1. The weight function

w(t) = (1− t2)−1/2 + c on [−1,1], c >0.

Whenc=0, this is theChebyshevweight, andasc → ∞, oneexpects to recover theLegendrepolynomials.
Thus, in a sense, the polynomials orthogonal with respect tow “interpolate” between the Legendre and
Chebyshev polynomials.

It would be very difficult to find a single quadrature scheme that would adequately approximate an
integral with respect to the weight functionw by a finite sum. However, by consideringw as a two-
component weight function, the first component consisting of the Chebyshev weight, and the second of a
constant weight function, a natural discretization is obtained by applyingGauss–Chebyshev quadrature to
the first component, and Gauss–Legendre quadrature to the second. Thus, the inner product with respect
to the weight functionw is approximated by

(p, q)w =
∫ 1

−1
p(t)q(t)(1− t2)−1/2 dt + c

∫ 1

−1
p(t)q(t)dt

≈
M∑
k=1

wChk p(xChk)q(xChk) + c

M∑
k=1

wLk p(x
L
k)q(x

L
k), (15)

wherexChk ,wChk are the nodes and weights of theM-point Gauss–Chebyshev quadrature formula, andxLk ,
wLk those of theM-point Gauss–Legendre quadrature formula. This in effect approximates the measure
d�(t) = w(t)dt by a discreteN-point measure d�N , whereN = 2M. SinceM-point Gauss quadrature
integrates polynomials of degree 2M − 1 exactly and all inner products in the Darboux formulae (12)
involve polynomials of degree at most 2n−1, the choiceM = n will insure that�k(d�)= �k(d�N) for all
k�n − 1, and similarly for the�k. Thus, Stieltjes’s procedure, and therefore also Lanczos’s algorithm,
produces exact results. There is no need to increaseN any further.
In general, the support interval[a, b] of d� is decomposed intomsubintervals

[a, b] =
m⋃

�=1
[a�, b�], m�1,

which may or may not be disjoint. The integral of a polynomialf against the measure d�(t) = w(t)dt is
then represented somehow in the form

∫ b

a

f (t)w(t)dt =
m∑

�=1

∫ b�

a�

f�(t)w�(t)dt, (16)

where in themost general casef� will differ from f (and in factmay no longer be a polynomial) andw� is a
positive weight functionwhich, too,may be different fromw. TheMulticomponent DiscretizationMethod

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 223

uses (16) withf (t) = p(t)q(t) to approximate the inner product(p, q)w by applying an appropriateM-
point quadrature rule to each constituent integral on the right of (16). This yields an approximation d� ≈
d�N withN =mM. If the givenmeasure d�, in addition to the absolutely continuous component, contains
also a discretep-point component, then the latter is simply added to the(mM)-point approximation to
yield anN-point approximation d�N with N = mM + p. Using either Stieltjes’s procedure or Lanczos’s
algorithm,we thencompute theapproximations�k(d�N),�k(d�N)of �k(d�),�k(d�) for k=0,1, . . . , n−1.
The integerM (and with itN) may be successively increased in an attempt to obtain sufficient accuracy.
In Matlab, the multicomponent discretization method is implemented in the routine

[ab,Mcap, kount] = mcdis(n, eps0, quad,Mmax).

Here,n is the number of recurrence coefficients to be computed, andeps0 the desired relative accuracy
in the �-coefficients. (The�-coefficients, if they are small, or even zero, may be obtained only to an
absolute accuracy ofeps0 .) The input parameterquad is a quadrature routine that generates theM nodes
and weights of the quadrature approximation of the�th component of d� for the current discretization
parameterM. Itmay be auser-defined routine tailored to the specific problemat hand, or a general-purpose
routine provided automatically. The last input parameterMmaxis an upper bound for the discretization
parameterM, which, when exceeded, causes the routine to issue an error message. The output parameter
ab is then×2 array of the desired recurrence coefficients,Mcap the value ofM that yields the requested
accuracy, andkount the number of iterations required to achieve this accuracy. The details of the
discretization must be specified prior to calling the procedure. They are embodied in the following global
parameters:

mc the number of component intervals
mp the number of points in the discrete part of the measure (mp= 0 if there is none)
iq to be set equal to 1 if a user-defined quadrature routine is to be used, and different from

1 otherwise
idelta a parameter whose default value is 1, but which is preferably set equal to 2 ifiq = 1 and

the user provides Gauss-type quadrature routines
irout to be set equal to 1 if Stieltjes’s procedure is to be used, and different from 1 otherwise
DM if mp>0 anmp×2 array[[x1 y1]; [x2 y2]; . . . ; [xmp ymp]] containing the abscissae and

jumps of the discrete component of the measure
AB anmc×2 array specifying the component intervals[[a1 b1]; [a2 b2]; . . . ; [amcbmc]]
Example 2.2. Normalized Jacobi weight function plus a discrete measure,

d�(t) = [�J
0]−1(1− t)�(1+ t)� dt +

p∑
j=1

yj�(t − tj)dt, �> − 1, �> − 1, yj >0,

where�J
0 = ∫ 1

−1(1− t)�(1+ t)� dt .

Similarly, as in Example 2.1, we use theM-point Gauss–Jacobi quadrature rule withM =n and Jacobi
parameters�, � to discretize the absolutely continuous component, but now add on the discretep-point
measure. As in Example 2.1, this will produce the firstn recurrence coefficients exactly. The Matlab

224 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

routine implementing this is shown in the box below.

The variablesa andb are declared global since they are used in the quadrature routinequadjp.m , which
is shown in the next box. Note also the choiceMmax= n+1 , which is legitimate since the discretization
parameterM = n yields exact results.

The integermuin the routinequadjp (in the present casemu= 1) specifies themuth component interval.
The call togauss(N,ab) generates theN-point Gaussian quadrature rule for the measure identified via
theN×2 arrayab of its recurrence coefficients.
Demo#3: The first 40 recurrence coefficients of the normalized Jacobi weight function with parameters

� = −1
2, � = 3

2 and a mass point of strength 2 added at the left endpoint of[−1,1].
The Matlab program, followed by the output (only partially displayed), is shown in the box below.

The results can be compared with analytic answers (cf.[11, p. 43]) and are found to be accurate to all
digits shown.

Example 2.3.A weight function involving the modified Bessel function,

w(t) = t�K0(t) on [0,∞], �> − 1.

This has applications in the asymptotic approximation of oscillatory integral transforms[27].

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 225

The discretization of the measure d�(t) = w(t)dt should be done with due regard to the properties of
the weight function, especially its behavior for small and larget. This behavior is determined by

K0(t) =
{
R(t) + I0(t) ln(1/t) if 0< t�1,
t−1/2e−t S(t) if 1� t <∞,

whereI0 is the “regular” modified Bessel function andR,Sare smooth functions for which good rational
approximations are known[19]. This suggests the decomposition[0,∞] = [0,1] ∪ [0,1] ∪ [0,∞] and
the representation

∫ ∞

0
f (t)w(t)dt =

∫ 1

0
[R(t)f (t)]t� dt +

∫ 1

0
[I0(t)f (t)]t� ln(1/t)dt

+ e−1
∫ ∞

0
[(1+ t)�−1/2S(1+ t)f (1+ t)]e−t dt. (17)

Thus, in the notation of (16),

f1(t) = R(t)f (t), w1(t) = t� on [0,1],
f2(t) = I0(t)f (t), w2(t) = t� ln(1/t) on [0,1],
f3(t) = e−1(1+ t)�−1/2S(1+ t)f (1+ t), w3(t) = e−t on [0,∞].

The appropriate discretization of (17), therefore, involves Gauss–Jacobi quadrature (with parameters 0
and�) for the first integral, Gauss quadrature relative to the weight functionw2 on [0,1] for the second
integral, andGauss–Laguerre quadrature for the third integral. TheGaussian quadrature rules required are
readily generated, the first and third by classicalmeans, and the second by using the routiner _jaclog.m
for generating the recurrence coefficients for the weight functionw2 followed by an application of the
routinegauss.m . This is implemented for arbitrary�> − 1 in the routiner _modbess.m shown in
the next box. The routiner _jacobi01.m called in the sixth line generates the recurrence coefficients
for the shifted Jacobi polynomials (supported on the interval[0,1]). The variablesabjac , abjaclog ,
ablag , declared global, are used in the quadrature routinequadbess.m , which also incorporates one
of the rational approximations of[19] for computingR, S.

Demo#4: Compute
∫ ∞

0
e−t t�K0(t)dt =

√
�

2�+1
�2(� + 1)

�(� + 3/2)
.

226 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

The routine in the box below appliesn-point Gauss quadrature of e−t relative to the weight function
w(t) = t�K0(t) and determines the smallestn for which the relative error is less thaneps0 .

For the choices made ofa, N, Mmax, and eps0 = 2.22× 10−12, the routine yieldsn = 12, s =
3.937402486427721, with a relative error of 7.32× 10−13.

2.5. Modification algorithms

The problem to be considered here is the following: Given the recurrence coefficients of d�, generate
those of the modified measure

d�mod(t) = r(t)d�(t), r rational�0 on supp(d�).

The problem can be reduced to the one in whichr is either a real linear, or a real quadratic factor or
divisor, since any general realr can be written as a product of such factors and divisors. For these special
cases, the problem has been solved in[8]. (Other approaches have been taken in[17,4]; see also[12,
Section 3].) We briefly discuss the case of a linear factor, already solved by Galant[6].

Example 2.4.Modification by a liner factor,

r(t) = s(t − c), c ∈ R\supp(d�),
wheres = ±1 is chosen such thatr is nonnegative on the support of d�.

The solution given by Galant is most elegantly described in linear algebra terms. It consists in applying
one step of the (symmetric) shifted LR algorithm to the Jacobi matrix of the measure d�. Specifically, the
matrix s[Jn+1(d�) − cI], which by assumption is positive definite, is first Cholesky decomposed,

s[Jn+1(d�) − cI] = LLT,

whereupon the factors on the right are interchanged and the shiftcI added back. Discarding the last row
and column of the resulting matrix yields the desired Jacobi matrix of ordern,

Jn(d�mod) = (LTL + cI)[1:n,1:n].
The solution can also be described in terms of a nonlinear recurrence algorithm, which in Matlab is
implemented by the routine

ab = chri1(N, ab0, c),

whereab0 contains the firstN + 1 recurrence coefficients of d� andc is the shift parameter.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 227

Our package includes seven additional routineschri2.m , chri3.m , . . ., chri8.m corresponding
to quadratic factors of various types, linear divisors, and quadratic divisors of different kinds. The routine
chri7.m , for example, deals with a quadratic factor of the formr(t) = (t − x)2 with x ∈ R. It would
be tempting to apply the routinechri1.m for the linear factort − x twice in succession, but this may
be risky if x is inside the support of d�. There is, however, an algorithm similar to Galant’s algorithm,
which applies one step of the shifted QR algorithm to the Jacobi matrixJn+2(d�) and discards the last
two rows and columns of the result to obtainJn(r d�) (cf. [12, Section 3.3]).

Example 2.5. Induced orthogonal polynomials[14].

Given an orthogonal polynomial�m(· ;d�) of fixed degreem, the induced orthogonal polynomialof
degreek is orthogonal with respect to the weight functionw(t) = �2m(t)d�(t).
Here,

r(t) =
m∏

�=1
(t − x�)

2,

wherex� are the zeros of�m. This calls form successive applications of the routinechri7.m with
x = x�, � = 1,2, . . . , m. The routineindop.m shown in the box below implements this.

Demo#5: Induced Legendre polynomials.
The routine shown in the next box generates the first 20 recurrence coefficients of selected induced

orthogonal polynomials when d� is the Legendre measure.

228 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

Table 2
�-coefficients of induced Legendre polynomials

k �k,0 �k,2 �k,6 �k,11

0 2.0000000000 0.1777777778 0.0007380787 0.0000007329
1 0.3333333333 0.5238095238 0.5030303030 0.5009523810
6 0.2517482517 0.1650550769 0.2947959861 0.2509913424
12 0.2504347826 0.2467060415 0.2521022519 0.1111727541
19 0.2501732502 0.2214990335 0.2274818789 0.2509466619

By symmetry, all the�-coefficients are zero. Selected values of the�-coefficients returned by the routine
(rounded to 10 decimal places) are shown inTable 2.
The procedure is remarkably stable, not only for the Legendre measure, but also for other classical

measures, and forn andmas large as 320; see[11, Tables X and XI].

3. Sobolev orthogonal polynomials

These are polynomials orthogonal with respect to an inner product that involves derivatives in addition
to function values, each derivative having associated with it its own (positive) measure. Thus,

(p, q)S =
∫

R

p(t)q(t)d�0(t) +
∫

R

p′(t)q ′(t)d�1(t) + · · · +
∫

R

p(s)(t)q(s)(t)d�s(t). (18)

The Sobolev polynomials{�k(· ; S)} are monic polynomials of degreek orthogonal with respect to the
inner product of (18),

(�k, �
)S

{ = 0, k �=
,

> 0, k =
.
(19)

These polynomials no longer satisfy a three-term recurrence relation, but like any other system of monic
polynomials whose degrees increase by 1 from one polynomial to the next, they must satisfy a recurrence
relation of the extended form

�k+1(t) = t�k(t) −
k∑

j=0
�k
j�k−j (t), k = 0,1,2, (20)

In place of the Jacobi matrix, we now have an upper Hessenberg matrix of recurrence coefficients,

Hn =




�00 �11 �22 · · · �n−2
n−2 �n−1

n−1
1 �10 �21 · · · �n−2

n−3 �n−1
n−2

0 1 �20 · · · �n−2
n−4 �n−1

n−3· · · · · · · · · · · · · · · · · ·
0 0 0 · · · �n−2

0 �n−1
1

0 0 0 · · · 1 �n−1
0




. (21)

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 229

In the cases = 0 corresponding to ordinary orthogonal polynomials, one has�k
j = 0 for j >1, and the

matrixHn is tridiagonal. It can be symmetrized by a (real) diagonal similarity transformation and then
becomes the Jacobi matrixJn(d�0) (cf. (4)). Whens >0, symmetrization is no longer possible, since
some of the eigenvalues ofHn may well be complex.

3.1. Moment-based algorithms

We define modified moments similarly as in (7), but now a separate set of them for each measure d�	,

m
()
k =

∫
R

pk(t)d�	(t), k = 0,1,2, . . . , 	 = 0,1, . . . , s. (22)

For simplicity, we use the same set of polynomials{pk} for each measure and assume, as in (8), that they
satisfy a three-term recurrence relation. In analogy to (9), there is now a unique map that takes the first
2n modified moments of all the measures d�	 into the recurrence coefficients�k

j ,

[m()
k]2n−1

k=0 , 	 = 0,1, . . . , s �→ [�k
j], k = 0,1, . . . n − 1, j = 0,1, . . . , k. (23)

The conditioning of this map has been studied in[28], and an algorithm, analogous to the modified
Chebyshev algorithm, developed (fors = 1) in [15]. The corresponding routine in Matlab is

[B, normsq] = chebyshev_sob(N,mom, abm).

Here,N is then in (23),momthe 2× 2N array of the first 2N modified moments corresponding to d�0
and d�1, andabm the(2N − 1) × 2 array of the recurrence coefficients in (8). The output variableB is
theN ×N matrix of the recurrence coefficients�k

j , k =0,1, . . . , N −1, 0�j �k, where�k
j occupies the

positionB(j + 1, k + 1) of the matrixB; all remaining elements ofB are zero. The routine also returns
the optionalN-vectornormsq of the squared norms‖�k‖2S of the Sobolev orthogonal polynomials. If
abm is absent in the list of input parameters, then ordinary moments are assumed (ak = bk = 0).

Example 3.1. The polynomials of Althammer[1].

These are the Sobolev orthogonal polynomials withs = 1 and d�0(t) = dt , d�1(t) =
dt on [−1,1],
where
>0. There is a fairly obvious choice of the polynomials{pk} for defining the modified moments,
namely the monic Legendre polynomials. All modified moments in this case, by orthogonality, are zero
except for

m
(0)
0 = 2, m

(1)
0 = 2
.

InMatlab, the recurrencematrixB for theAlthammer polynomials is generated as shown in the box below
(whereN = n andg =
).

230 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8
x 10−6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
x 10−6

Fig. 3. Legendre vs. Althammer polynomial.

Demo#6: Legendre vs. Althammer polynomials.
The routine in theboxbelowgeneratesandplots theSobolevpolynomial of degreeN=20corresponding

to s = 1 and
 = 0 (Legendre polynomial) resp.
 = 1 (Althammer polynomial). It is assumed that the
matrixBhas already been generated by the routine forAlthammer polynomials shown above withN= 20
andg = 0 resp.g = 1.

The plot for the Legendre polynomial is shown inFig. 3in the left frame, and the one for the Althammer
polynomial in the right frame.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 231

Interestingly, for the Legendre polynomial the envelope of the extreme points is convex on top and
concave at the bottom, whereas for the Althammer polynomial it is the other way around. Note also that
�20(±1) = 0.7607× 10−5 for the Legendre, and�20(±1) = 0 for the Althammer polynomial.

3.2. Discretization algorithm

The analogue for Sobolev orthogonal polynomials of the Darboux formulae (12) is

�k
j = (t�k, �k−j)S

(�k−j , �k−j)S
, j = 0,1, . . . , k, (24)

with the inner product(·, ·)S defined as in (18). TheDiscretized Stieltjes Algorithm, similarly as for
ordinary orthogonal polynomials, consists in combining the formulae (24) with the recurrence relation
(20), discretizing the inner products in (24) by suitable quadrature schemes.We chose to approximate the
absolutely continuous component of each measure d�	 by a Gauss-type quadrature rule,

(p, q)d�	
≈

n	∑
k=1

w
()
k p(x

()
k)q(x

()
k), 	 = 0,1, . . . , s, (25)

and to add on any discrete component of d�	 if present. In Matlab, the quadrature schemes are identified
by anmd × 2(s + 1) arrayxw,

xw =
x
(0)
1 · · · x

(s)
1 w

(0)
1 · · · w

(s)
1

x
(0)
2 · · · x

(s)
2 w

(0)
2 · · · w

(s)
2

...
...

...
...

x
(0)
md · · · x

(s)
md w

(0)
md · · · w

(s)
md

wheremd =max(n). In each column ofxw the entries afterx()
n	 resp.w

()
n	 (if any) are ignored by the

routine. The routine itself has the form

B = stieltjes_sob(N, s, nd, xw, a0, same),

wherend = [n0, n1, . . . , ns], a0 = �0(d�0), andsame is a logical variable to be set equal to 1 if all
quadrature rules have the same nodes, and equal to 0 otherwise. Ifsame= 1, the routine takes advantage
of significant simplifications that are possible and reduce running time.

Example 3.2. The Althammer polynomials, revisited.

The box below shows the generation of the recurrence matrixB for the Althammer polynomials using
the routinestieltjes _sob.m .

232 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

The results are identical with those produced by the routinechebyshev _sob.m . There is no restric-
tion, however, on the parameterswhen using the routinestieltjes _sob.m .

3.3. Zeros

If �(t) is the vector of the firstnSobolev orthogonal polynomials,

�T(t) = [�0(t), �1(t), . . . , �n−1(t)],

then the recurrence relation (20) can be written in matrix form as follows,

t�T(t) = �T(t)Hn + �n(t)e
T
n,

whereen is the last coordinate vector inRn. If t = �� is a zero of�n, the last term vanishes, implying
that�� is an eigenvalue of the matrixHn and�T(��) a corresponding (left) eigenvector. Thus, the zeros
of Sobolev orthogonal polynomials can be computed as eigenvalues of an upper Hessenberg matrix. In
Matlab, this is done by the routinesobzeros.m shown in the box below.

HereB is the recurrence matrix of orderN for the Sobolev orthogonal polynomials, andn�N . The
zeros are arranged in increasing order.
Demo#7: The zeros of the Althammer polynomial of degree 20 with
 = 1.
Assuming that the matrixBhas already been generated by either the modified Chebyshev algorithm or

the Stieltjes procedure as described in Sections 3.1 and 3.2, the box below shows the Matlab commands

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234 233

and output (only the positive zeros are shown, rounded to 12 decimals).

Judging from how well the symmetry of the roots is satisfied, the results appear to be accurate to all
digits shown except the last, which may be in error by one or two units. Generating the matrixB by
the modified Chebyshev algorithm or Stieltjes’s procedure produces the same results to this accuracy,
but the Stieltjes procedure is considerably slower (by a factor of about 14) than the modified Chebyshev
algorithm.

References

[1] P. Althammer, Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste
Approximation, J. Reine Angew. Math. 211 (1962) 192–204.

[2] P.L. Chebyshev, Sur l’interpolation par la méthode des moindres carrés, Mem. Acad. Impér. Sci. St. Petersbourg (7)1(15)
(1859) 1–24. Also inXuvres I, pp. 473–498.

[3] T.S. Chihara, An introduction to orthogonal polynomials, Mathematics and Its Applications, vol. 13, Gordon and Breach,
NewYork, 1978.

[4] B. Fischer, G.H. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J.
Comput. Appl. Math. 43 (1992) 99–115.

[5] G. Freud, Orthogonal Polynomials, Pergamon Press, New York, 1971 (English translation of Orthogonale Polynome,
Birkhäuser, Basel, 1969.).

[6] D. Galant, An implementation of Christoffel’s theorem in the theory of orthogonal polynomials, Math. Comp. 25 (1971)
111–113.

[7] W. Gautschi, Construction of Gauss–Christoffel quadrature formulas, Math. Comp. 22 (1968) 251–270.
[8] W. Gautschi, An algorithmic implementation of the generalized Christoffel theorem, in: G. Hämmerlin (Ed.), Numerical

Integration, Internat. Ser. Numer. Math. 57 (1982) 89–106, Birkhäuser, Basel.
[9] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982) 289–317.
[10] W. Gautschi, On some orthogonal polynomials of interest in theoretical chemistry, BIT 24 (1984) 473–483.
[11] W. Gautschi, Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type

quadrature rules, ACM Trans. Math. Software 20 (1994) 21–62.
[12] W.Gautschi, The interplay between classical analysis and (numerical) linear algebra—a tribute toGeneH.Golub, Electron.

Trans. Numer. Anal. 13 (2002) 119–147 (electronic).
[13] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford, 2004.
[14] W. Gautschi, S. Li, A set of orthogonal polynomials induced by a given orthogonal polynomial, Aequationes Math. 46

(1993) 174–198.
[15] W. Gautschi, M. Zhang, Computing orthogonal polynomials in Sobolev spaces, Numer. Math. 71 (1995) 159–183.

234 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215–234

[16] W.B. Gragg, W.J. Harrod, The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math. 44
(1984) 317–335.

[17] J. Kautsky, G.H. Golub, On the calculation of Jacobi matrices, Linear Algebra Appl. 52/53 (1983) 439–455.
[18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J.

Res. Nat. Bur. Standards 45 (1950) 255–282Also in Collected Published Papers with Commentaries, vol. V, pp. 3-9–3-36.
[19] A.E. Russon, J.M. Blair, Rational function minimax approximations for the Bessel functionsK0(x) andK1(x), Report

AECL-3461, Atomic Energy of Canada Limited, Chalk River, Ontario, 1969.
[20] H. Rutishauser, On Jacobi rotation patterns, in: N.C. Metropolis, A.H. Taub, J. Todd, C.B. Tompkins (Eds.), Experimental

Arithmetics, High Speed Computing and Mathematics, Proc. Sympos. Appl. Math. 15 (1963) 219–239, American
Mathematical Society, Providence, RI.

[21] R.A. Sack, A.F. Donovan, An algorithm for Gaussian quadrature given modified moments, Numer. Math. 18 (1972)
465–478.

[22] H. Stahl,V. Totik, General orthogonal polynomials, Encyclopedia of Mathematics and ItsApplications, vol. 43, Cambridge
University Press, Cambridge, 1992.

[23] T.J. Stieltjes, Quelques recherches sur la théorie des quadratures ditesmécaniques,Ann. Sci. École Norm. Paris (3)1 (1884)
409–426. Also inXuvres I, pp. 377–396.

[24] P.K. Suetin, Classical Orthogonal Polynomials, second ed., Nauka, Moscow, 1979 (in Russian).
[25] G. Szegö, Orthogonal Polynomials, fourth ed., AMS Colloquium Publications, vol. 23, American Mathematical Society,

Providence, RI, 1975.
[26] J.C. Wheeler, Modified moments and Gaussian quadratures, Rocky Mountain J. Math. 4 (1974) 287–296.
[27] R. Wong, Quadrature formulas for oscillatory integral transforms, Numer. Math. 39 (1982) 351–360.
[28] M. Zhang, Sensitivity analysis for computing orthogonal polynomials of Sobolev type, in: R.V.M. Zahar (Ed.),

Approximation and computation, Internat. Ser. Numer. Math. 119 (1994) 563–576, Birkhäuser Boston, Boston, MA.

	Orthogonal polynomials (in Matlab)
	Introduction
	Orthogonal polynomials
	Recurrence coefficients
	Modified Chebyshev algorithm
	Discrete Stieltjes and Lanczos algorithm
	Discretization methods
	Modification algorithms

	Sobolev orthogonal polynomials
	Moment-based algorithms
	Discretization algorithm
	Zeros

	References

