Available online at www.sciencedirect.com

SCIENCE<CﬁDIRECT@ JOURNAL OF

COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 178 (2005) 215—234
www.elsevier.com/locate/cam

Orthogonal polynomials (in Matlab)
Walter GautscHi

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1389, USA

Received 26 September 2003; received in revised form 23 March 2004

Abstract

A suite of Matlab programs has been developed as part of the book “Orthogonal Polynomials: Computation and
Approximation” Oxford University Press, Oxford, 2004, by Gautschi. The package contains routines for generating
orthogonal polynomials as well as routines dealing with applications. In this paper, a brief review of the first part
of the package is given, dealing with procedures for generating the three-term recurrence relation for orthogonal
polynomials and more general recurrence relations for Sobolev orthogonal polynomials. Moment-based methods
and discretization methods, and their implementation in Matlab, are among the principal topics discussed.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Orthogonal polynomials; Recurrence relations; Matlab

1. Introduction

The analytic theory of orthogonal polynomials is well documented in a number of treatises; for classical
orthogonal polynomials on the real line as well as on the circle[Z&efor those on the real line also
see[24]. General orthogonal polynomials are dealt witiShand more recently if22], especially with
regard tanth-root asymptotics. The tejd] is rooted in continued fraction theory and recurrence relations.

While the theory of orthogonal polynomials is well developed, the practice of orthogonal polynomials—
constructive, computational, and software aspects—is still in an early stage of development. An effort in
this direction is being made by the author’'s bd&R] and the accompanying packa@®Q a Matlab
Suite of Programs for Generating Orthogonal Polynomials and Related Quadrature, Riliek can be
found at the URLhttp://www.cs.purdue.edu/archives/2002/wxg/codes

*Tel.: +1 765 494 1995; fax: +1 765 494 0739.
E-mail addresswxg@cs.purdue.ed{V. Gautschi).

0377-0427/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.03.029

http://www.elsevier.com/locate/cam
http://www.cs.purdue.edu/archives/2002/wxg/codes
mailto:wxg@cs.purdue.edu

216 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

The purpose of the work ifL3] is twofold: (i) to present various procedures for generating the coef-
ficients of the recurrence relations satisfied by orthogonal polynomials on the real line and by Sobolev
orthogonal polynomials; and (ii) to discuss selected applications of these recurrence relations, including
numerical quadrature, least squares and moment-preserving spline approximation, and the summation of
slowly convergent series. All is to be implemented in the form of Matlab scripts. In the present article
we wish to give a brief account of the first part [af3]: the generation of recurrence coefficients for
orthogonal polynomials and related Matlab programs. All Matlab routines mentioned in this paper, and
many others, are downloadable individually from the above Web site.

2. Orthogonal polynomials

We begin with some basic facts about orthogonal polynomials on the real line and introduce appropriate
notation as we go along. Supposkisd a positive measure supported on an interval (or a set of disjoint
intervals) on the real line such that all momemnts- fR t" dA(¢) exist and are finite. Then the inner product

(P Pz = /R p(t)q (1) di(t) (1)
is well defined for any polynomials g and gives rise to a unique systeipir) =" +---,r=0,1,2, ...,
of monic orthogonal polynomials

T () = me (5 dA) - <ﬂk””)d’~{§8’) B

It is well known that they satisfy a three-term recurrence relation
1 (1) = (¢ — o) (1) — Prme—1(r), k=0,1,2,...,
n_1(t) =0, mo(t) =1, 3)

whereo; = o, (d2) andp;, = f,(d2) are real resp. positive constants which depend on the measuferd
convenience, we defing = [, di(r). Associated with the recurrence relation (3) is Jaeobi matrix

- o \/ﬁ_l 0
VB oa VB

J(d2) = B w2 , (4)

. 0 .

a symmetric tridiagonal matrix of infinite order. Its leading principal minor matrix of ordetll be
denoted by

3, (d2) = I (10, 1:n]- (5)

As already indicated in Section 1, the basic problem is this: for a given measareldor given integer
n>1, generate the first coefficientsu (d4), k =0, 1, 2, ..., n — 1, and the firsh coefficientsp; (dA),
k=0,1,2,...,n —1, thatis, the Jacobi matrix (d/) of ordern andp,.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 217

Table 1
Classical weight functions

Name w(r) Supported on
Jacobi A=A+l a>—-1,>—-1 [—1,1]
Laguerre e to>—1 [0, oo]
Hermite 1261?25~ — 1 [—o0, 0]

&%y} Bo

(€3] I3}

anN-—1 ﬁN—1

Fig. 1. The arrayab of recurrence coefficients.

2.1. Recurrence coefficients

Frequently, the measure. ¢k absolutely continuous, i.e., representable in the form
di(r) = w(r) dr, (6)

wherew is a nonnegative function, callegeight function integrable on the support ofidand not
identically zero. Among the best-known weight functions are the classical weight functions, the more
important of which are listed ifable 1

For these, the recurrence coefficients are explicitly known. In Matlab, th&lfiesturrence coefficients
are always stored in aN x 2 arrayab as shown irFig. 1

The Matlab command to compute them has the syabaxr _namdparametery wherenameiden-
tifies the weight function, andarameterss a list of parameters including. Thus, for example, in the
case of the Jacobi weight function, the Matlab command is

ab=r_jacobi(N,a,b).

Here,a, b are the Jacobi parameters (denotedubgnd g in Table 1. If « = g, it suffices to write
ab =r _jacobi(N,a) ,and ifa = =0, to writeab =r _jacobi(N)
Dematl: The first 10 recurrence coefficients for the Jacobi polynomials with parameter%, B= %

218 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

The Matlab command, followed by the output, is shown in the box below.

>> ab=r_jacobi(10,-.5,1.5)

ab =

.712388980384690e+00
.388888888888889e-01
.100000000000000e-01
.295918367346939e-01
.376543209876543e-01
.417355371900826e-01
.440828402366864e-01
.455555555555556e-01
.465397923875433e-01
.472299168975069e-01

.666666666666666e-01
.333333333333333e-01
.714285714285714e-02
.174603174603174e-02
.020202020202020e-02
.398601398601399e-02
.025641025641026e-02
.843137254901961e-03
.191950464396285e-03
.0125631328320802e-03

GO OO NF, P, NWOR, O
N NDNNNDNDNDNE D

Classical weight functions are not the only ones for which the recurrence coefficients are explicitly
known. For example, the logistic weight function

—1
w(t)=——5, teR,
(1+e1)?

of interest in statistics, has all coefficieajs=0 (by symmetry) ango =1, f, =k*n?/(4k? — 1), k> 1[3,
Eq. (8.7) where. =0, x =t /=n]. The corresponding Matlab routineris logistic.m . Other examples
are measures occurring in the diatomic linear chain model, which are supported on two disjoint intervals,
cf. [10].

Many nonclassical weight functions and measures, however, are such that their recurrence relations
are not explicitly known. In these cases, numerical techniques must be used, some of which are to be
described in the next four subsections.

2.2. Modified Chebyshev algorithm

In principle, the desired recurrence coefficients can be computed from well-known formulae expressing
them in terms of Hankel-type determinants involving the momentef the given measureid The
problems with this are: excessive complexity and, more seriously, extreme numerical instability. To avoid
these problems, one can attempt to oemlified moments

mr:/pr(t)dk(t), r=012,..., (7
R

where p, are monic polynomials of degra€‘close” in some sense to the desired polynomiglsin
particular, they are assumed to also satisfy a three-term recurrence relation

Pi+1(t) = (t —ap) pr(t) — brpi—1(t), k=0,1,2,...,

p-1() =0, po(t) =1, @)

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 219

but this time withknowncoefficientsz;, € R, b, > 0. (We allow for zero coefficients,, sinceay =b; =0
yields the ordinary moments.) There is then a unique map

R? > R : [mk]l%i?)l > o, ﬁk]g;(l) ©

that takes the firstZmodified moments into the desiradecurrence coefficientg andp,. An algorithm
implementing this map has been developed by Sack and Dorfa¥grand in more definitive form, by
Wheelel[26]. In the case of ordinary moments. (& b;, =0), it reduces to an algorithm already developed
(for discrete measures) by Chebyshi2ls We called it, therefore, theodified Chebyshev algorithri

is implemented in the Matlab procedure

ab = chebyshev(N, mom, abm),

whereNis the numben in (9), monthe 1x 2N array of modified moments, arsdmthe (2N — 1) x 2
array of the first 2/ — 1 recurrence coefficientg,, by in (8). If abmis omitted from the list of input
parameters, the routine assunabésn= zeros(2*N-1,2) , that is, ordinary moments.

In view of the highly ill-conditioned nature of map (9) wher. = p, are ordinary moments, the
conditioning of the modified moment map is an important question that has been studied already in
[7], and more definitively irf9]. There are examples where the map is entirely well conditioned, but
also others, especially when the measutdnds unbounded support, in which the map is almost as ill
conditioned as for ordinary moments.

Dem@a#2: The weight function

w(t) =[(L— o’ A -5 Y2 0on[-1,1], O0<w<l,

of the “elliptic orthogonal polynomials”.
Since the weight function reduces to the Chebyshev weight function wheg, it seems natural to
use as modified moments those relative to the monic Chebyshev polynomials,

1 1 1
mo:/ w(t) de, mk:ﬁ/ Ti(Hw()dr, k>1.
-1 -1

Their computation, though not trivial by any means, can be accomplished in a very stable {&shion
Example 3.3] The first 2V of them are generated in the Matlab routmenell.m . The following box
shows the Matlab script required to generate elliptic polynomials.

function ab=r_elliptic(N,om2)
abm=r_jacobi (2*N-1,-1/2);
mom=mm_ell (N, om2) ;
ab=chebyshev(N,mom, abm) ;

220 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

The routine works well even fan? quite close to 1, as is shown by the output below (displayed only
partially) forN=40,o0m2=.999.

ab =

.682265121100620e+00
.937821421385184e-01
.198676724605757e-01
.270401183698990e-01
.410608787266061e-01
.454285325203698e-01
0 .499915376529289e-01
0 2.499924312667191e-01
0 2.499932210069769e-01

- oo oocoo
NN NP N ©

N

All coefficients are accurate to machine precision.
2.3. Discrete Stieltjes and Lanczos algorithm

Partly in preparation for the next subsection, we now considisaete N-point measure

N
din() =" wid(t —xi), wi >0, (10)
k=1

whered is the Dirac delta function. Thus, the measure is supported distinct pointsx; on the real
axis, where it has positive jumps;. The corresponding inner product is a finite sum,

N
(P.)y = fR PG din (1) =Y wep (g e). (11)

k=1

There is now only a finite numbé@X, of recurrence coefficientg = o (dAy), S = B (dix), Which can
be computed by either of two algorithms, one mentioned briefly by Sti¢Rgsand a more recent one
based on ideas of Lancz{is3].
The former combines Darboux’s formulae for the recurrence coefficients,
(e, M)
(M, TN
(e, m)N
kK— 7 1 >
(Mk—1, Tk—1) N
with the recurrence relation (3). In (12), theare the (as yet unknown) discrete orthogonal polynomials
mr (-5 diy). Stieltjes’s Procedureonsists in starting with = 0 and successively increasikdy 1 until
k=n —1. Thus, wherkt =0, we haverg = 1, so thatg can be computed by the top relation in (12) with
k=0 andpg by g = Z,’c\’zl wg. With og, S at hand, we can go into (3) with= 0 and computers (x)
for all the support points. This then in turn allows us to reapply (12) with= 1 and compute; and
B1. Going back to (3) withkk = 1, we computera(x;), whereupon (12) withk = 2 yieldsay, f,, etc. In
this manner we continue unti},_1, 8,_, have been computed. Hetec N.

o k=0,1,...,n—1,

(12)
k=1,2,...,n—1,

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 221

T wy
T | W2
IN | WN

Fig. 2. The arraxw of support points and weights.

The second algorithm is based on the existence of an orthogonal similarity transformation

1 Jur Jwz - Jun 1 VB O -+ 0 7
JUL x 0 - 0 S w0 JR - 0
Q| Vw2 O x2 -~ 0 Q=| 0 /B wu -+ O |,

whereQ is an orthogonal matrix of orde¥ + 1 having the first coordinate vecter € RV+! as its
first column.Lanczos’s Algorithnfl8] carries out this transformation and thus, sincedhendx; are
given, determines the recurrence coefficientss,. The algorithm, unfortunately, is unstable, but can be
stabilized by using ideas of Rutishau§20]; see[16].

In Matlab, the two algorithms are implemented in the routines

ab = stieltjes(n, xw)

<
ab =lanczos(n, xw) } s

wherexw is the N x 2 array of the support points and weights of the given discrete measure (10); see
Fig. 2

The first routine is generally the one to be preferred, althoughasproached, it may gradually
become unstable. If such is the case, and valuesn&gfarN are indeed required, the second routine is
preferable but is considerably more time-consuming than the first.

2.4. Discretization methods
The basic idea, first advanced[if] and more fully developed if®], is very simple: One first approx-
imates the given measure dy a discretéN-point measure,
di@t) ~ din (1), (13)

typically by applying some appropriate quadrature scheme. Thereafter, the desired recurrence coefficients
are approximated by those of the discrete measure,

ax (d) ~ o (dAn),
B (di) = B (din). (14)

If necessary, the integeM is increased to improve the approximation. For eltthe approximate
recurrence coefficients on the right of (14) are computed by one of the methods described in Section 2.3.

222 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

To come up with a good discretization (13) that yields fast convergende -as co may require skill
and inventiveness on the part of the user. But if implemented intelligently, the method is one of the most
effective ones for generating orthogonal polynomials.

The seemingly complicated constructions of multicomponent discretizations to be described further
on will first be motivated by a simple example.

Example 2.1. The weight function
wi)=1-rY24con[-1,1, c>0.

Whenc=0, thisis the Chebyshev weight, and-as- oo, one expectsto recoverthe Legendre polynomials.
Thus, in a sense, the polynomials orthogonal with respest‘interpolate” between the Legendre and
Chebyshev polynomials.

It would be very difficult to find a single quadrature scheme that would adequately approximate an
integral with respect to the weight functiom by a finite sum. However, by consideringas a two-
component weight function, the first component consisting of the Chebyshev weight, and the second of a
constant weight function, a natural discretization is obtained by applying Gauss—Chebyshev quadrature to
the first component, and Gauss—Legendre quadrature to the second. Thus, the inner product with respec
to the weight functiomw is approximated by

1 1
(P @)y = / 1p(r)g(r)(l—tzrl/zdwc / lp(t)q(t) dr

M M
~) wpGEMa (g™ + ¢ Y wi p()g (), (15)
k=1 k=1

wherexC", wEh are the nodes and weights of thepoint Gauss—Chebyshev quadrature formula,dnd
w,'; those of theM-point Gauss—Legendre quadrature formula. This in effect approximates the measure
di(r) = w(r) dt by a discreteN-point measure &y, whereN = 2M. SinceM-point Gauss quadrature
integrates polynomials of degre@d”2— 1 exactly and all inner products in the Darboux formulae (12)
involve polynomials of degree at most 2 1, the choiceV = n will insure thatx (d1) = o (d/y) for all
k<n — 1, and similarly for thes,. Thus, Stieltjes’s procedure, and therefore also Lanczos’s algorithm,
produces exact results. There is no need to incridlas®y further.

In general, the support intervil, b] of d/. is decomposed intm subintervals

m

la,b) =] lay bl m>1,
u=1

which may or may not be disjoint. The integral of a polynonfiatjainst the measure.@) = w(z) dr is
then represented somehow in the form

b m by,
/f(r)w(r)dtzz FuOwy (1) d, (16)

u:l Ay

where in the most general caggewill differ from f (and in fact may no longer be a polynomial) anglis a
positive weight function which, too, may be different fremTheMulticomponent Discretization Method

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 223

uses (16) withf (r) = p(t)q(¢) to approximate the inner produgt, ¢),, by applying an appropriate-

point quadrature rule to each constituent integral on the right of (16). This yields an approximiaton d

diy with N=mM. If the given measurexlin addition to the absolutely continuous component, contains

also a discret@-point component, then the latter is simply added to(th@/)-point approximation to

yield anN-point approximation @y with N = mM + p. Using either Stieltjes’s procedure or Lanczos’s

algorithm, we then compute the approximatiep@/.y), i (diy) of ax (d2), f (d2) fork=0, 1, ..., n—1.

The integeM (and with itN) may be successively increased in an attempt to obtain sufficient accuracy.
In Matlab, the multicomponent discretization method is implemented in the routine

lab, Mcap, kount] = mcdis(n, epsO, quad, Mmax).

Here,n is the number of recurrence coefficients to be computedepe@ the desired relative accuracy

in the p-coefficients. (Thex-coefficients, if they are small, or even zero, may be obtained only to an
absolute accuracy epsO0 .) The input paramet@uad is a quadrature routine that generatestheodes

and weights of the quadrature approximation of jte component of @ for the current discretization
parameteM. It may be a user-defined routine tailored to the specific problem at hand, or a general-purpose
routine provided automatically. The last input paramd&lenaxis an upper bound for the discretization
parameteM, which, when exceeded, causes the routine to issue an error message. The output parametel
ab is then x 2 array of the desired recurrence coefficieMsap the value oM that yields the requested
accuracy, ankount the number of iterations required to achieve this accuracy. The details of the
discretization must be specified prior to calling the procedure. They are embodied in the following global
parameters:

mc the number of component intervals

mp the number of points in the discrete part of the measue= 0 if there is none)

iq to be set equal to 1 if a user-defined quadrature routine is to be used, and different from
1 otherwise

idelta a parameter whose default value is 1, but which is preferably set equalitp 25fl and
the user provides Gauss-type quadrature routines

irout to be set equal to 1 if Stieltjes’s procedure is to be used, and different from 1 otherwise

DM if mp>0anmpx2 array[[x1 y1l; [x2 y2I; ... [xmp Ympll CONtaining the abscissae and
jumps of the discrete component of the measure

AB anmcx 2 array specifying the component intervillg; b1]; [az b2l; ... ; [amebme]]

Example 2.2. Normalized Jacobi weight function plus a discrete measure,
p
di) =[B) * A —0*A+)l de +) yjot —tpde, a>—1, p>—1, y;>0,
j=1
wherep} = f_ll(l —*A+0)fdr.
Similarly, as in Example 2.1, we use thNepoint Gauss—Jacobi quadrature rule with=r and Jacobi

parameters, j to discretize the absolutely continuous component, but now add on the digqretet
measure. As in Example 2.1, this will produce the firgiecurrence coefficients exactly. The Matlab

224 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

routine implementing this is shown in the box below.

function ab=r_jacplus(n,alpha,beta,ty)

global mc mp iq idelta irout DM AB

global a b

a=alpha; b=beta;

mc=1; mp=size(ty,1); iq=1; idelta=2; irout=1;
Mmax=n+1; DM=ty; AB=[-1 1]; epsO=le3*eps;
[ab,Mcap,kount]=mcdis(n,eps0,@quadjp,Mmax) ;

The variables andb are declared global since they are used in the quadrature rou@ugp.m , which
is shown in the next box. Note also the choMmax= n+1, which is legitimate since the discretization
paramete = n yields exact results.

function xw=quadjp(N,mu)
global a b

ab=r_jacobi(N,a,b); ab(1,2)=1;
xw=gauss (N, ab) ;

The integemuin the routinequadjp (in the present cagau= 1) specifies thenuth componentinterval.
The call togauss(N,ab) generates this-point Gaussian quadrature rule for the measure identified via
theNx2 arrayab of its recurrence coefficients.

Dema#3: The first 40 recurrence coefficients of the normalized Jacobi weight function with parameters
x=—32, =3 and a mass point of strength 2 added at the left endpoint bf1].

The Matlab program, followed by the output (only partially displayed), is shown in the box below.

>> ty=[-1 2];
>> ab=r_jacplus(40,-.5,1.5,ty)
ab =
-4 .444444444444e-01 3.000000000000e+00
2.677002583979e-01 6.635802469136e-01
3.224245925965e-01 8.620335316387e-02
1.882535273840e-01 1.426676765162e-01
1.207880431181e-01 1.809505902299e-01
8.380358927439e-02 2.025747903114e-01

.077921831426e-03 .489342817850e-01
1.972710627986e-03 .489888786295e-01
1.875292842444e-03 2.490393860403e-01

N
N

N

The results can be compared with analytic answerg1df. p. 43) and are found to be accurate to all
digits shown.

Example 2.3. A weight function involving the modified Bessel function,
w(t) =t"Ko(t) on [0, 0], o> —1.

This has applications in the asymptotic approximation of oscillatory integral transf@iths

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 225

The discretization of the measure(d) = w(¢) dr should be done with due regard to the properties of
the weight function, especially its behavior for small and largéis behavior is determined by

_JR@®) + Io(t)In(1/t) if 0 <<,
Ko(t) = {t_l/ze_’S(t) if 1<t <o0,

wherely is the “regular” modified Bessel function aRjiSare smooth functions for which good rational
approximations are knowi9]. This suggests the decompositi@) oc] = [0, 1] U [0, 1] U [0, oo] and
the representation

00 1 1
fo FOw(r) di = /0 LR() (1)) dir + /0 o) £ (1)) In(L/1)
+e?t /oo[(l + 0 Y280+ 1) fF(L+1)]e dr. (17)
0
Thus, in the notation of (16),

fit)=R@®) f(t), wi(t)=1*on][0,1],

fo(t)y =Io(®) f(t), wa() =1*In(1/1) on[O, 1],

fat)=e A+ Y2SA+ 1) f(A+1), wa)=e" onl0,]

The appropriate discretization of (17), therefore, involves Gauss—Jacobi quadrature (with parameters 0
ando) for the first integral, Gauss quadrature relative to the weight funetipan [0, 1] for the second
integral, and Gauss—Laguerre quadrature for the third integral. The Gaussian quadrature rules required are
readily generated, the first and third by classical means, and the second by using the rgaitiiog.m

for generating the recurrence coefficients for the weight funaiigriollowed by an application of the
routinegauss.m . This is implemented for arbitrary> — 1 in the routiner _modbess.m shown in

the next box. The routine_jacobiO1l.m called in the sixth line generates the recurrence coefficients

for the shifted Jacobi polynomials (supported on the int€ji®gl]). The variablesbjac , abjaclog

ablag , declared global, are used in the quadrature roireelbess.m , which also incorporates one

of the rational approximations §19] for computingR, S

function ab=r_modbess(N,a,Mmax,eps0)
global mc mp iq idelta irout AB
global abjac abjaclog ablag

mc=3; mp=0; iq=1; idelta=2; irout=1;
AB=[[0 1];[0 1];[0 Infl];
abjac=r_jacobiO1(Mmax,0,a);
abjaclog=r_jaclog(Mmax,a);
ablag=r_laguerre (Nmax) ;

ab=mcdis (N, eps0,@quadbess,Mmax) ;

Dema#4. Compute

VT I+ 1)
2+1 (0 +3/2)°

/ e 't"Ko(t)dt =
0

226 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

The routine in the box below appliespoint Gauss quadrature of erelative to the weight function
w(t) = t*Ko(t) and determines the smallestor which the relative error is less thapsO .

>> global a
>> a=-1/2; N=20; Mmax=200; epsO=ledx*eps;
>> exact=sqrt(pi)*(gamma(a+1))~2/(2" (a+1)*gamma(a+3/2));
>> ab=r_modbess (N, a,Mnax,eps0); s=0; n=0;
>> while abs(s-exact)>abs(exact)*eps0

n=n+1;

xw=gauss(n,ab) ;

s=sum(xw(:,2).*xexp(-xw(:,1)));

end

>> n, s, abs(s-exact)/abs(exact)

For the choices made af, N, Mmax andeps0 = 2.22 x 10712, the routine yields: = 12, s =
3.937402486427721, with a relative error 082 x 1013,

2.5. Modification algorithms
The problem to be considered here is the following: Given the recurrence coefficientsgeingrate
those of the modified measure
dAmod(t) = r(¢) dA(z), r rational >0 on supgdl).

The problem can be reduced to the one in whidh either a real linear, or a real quadratic factor or
divisor, since any general reatan be written as a product of such factors and divisors. For these special
cases, the problem has been solveBin (Other approaches have been takeflin4];, see alsd12,
Section 3]) We briefly discuss the case of a linear factor, already solved by Jélant

Example 2.4. Modification by a liner factor,
r(t) =s(t —c), c e R\supgdi),
wheres = +1 is chosen such thats nonnegative on the support of.d

The solution given by Galant is most elegantly described in linear algebra terms. It consists in applying
one step of the (symmetric) shifted LR algorithm to the Jacobi matrix of the measuBeekifically, the
matrix s[J,+1(dL) — cl], which by assumption is positive definite, is first Cholesky decomposed,

s[Jpp1(di) —cl]=LLT,

whereupon the factors on the right are interchanged and the:shifided back. Discarding the last row
and column of the resulting matrix yields the desired Jacobi matrix of arder

In(2mod) = (LTL + D)1, 120

The solution can also be described in terms of a nonlinear recurrence algorithm, which in Matlab is
implemented by the routine

ab = chril(N, ab0, c),

whereab0 contains the firstv + 1 recurrence coefficients oficdindc is the shift parameter.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 227

Our package includes seven additional routick®s2.m , chri3.m ..., chri8.m corresponding
to quadratic factors of various types, linear divisors, and quadratic divisors of different kinds. The routine
chriz.m , for example, deals with a quadratic factor of the forgn) = (r — x)? with x € R. It would
be tempting to apply the routirghril.m for the linear factor — x twice in succession, but this may
be risky if x is inside the support ofd There is, however, an algorithm similar to Galant’s algorithm,
which applies one step of the shifted QR algorithm to the Jacobi matrix(di) and discards the last
two rows and columns of the result to obtdj(r d/) (cf. [12, Section 3.3}

Example 2.5. Induced orthogonal polynomial&4].

Given an orthogonal polynomial, (- ; d2) of fixed degreem, theinduced orthogonal polynomialf
degreek is orthogonal with respect to the weight functior) = n,%(t) di(r).
Here,

ray=[]—-x0%
u=1

wherex, are the zeros of,,. This calls form successive applications of the routicleri7.m with
x=x,,u=12,...,m. The routinedndop.m shown in the box below implements this.

function ab=indop(N,m,ab0)
NO=size(ab0,1);
if NO<N+m, error(’input array abO too short’), end
ab=ab0;
if m==0, return, end
zw=gauss (m, ab0) ;
for imu=1:m
mi=N+m-imu;
for n=1:mi+l
abl(n,1)=ab(n,1);
abl(n,2)=ab(n,?2);
end
x=zw(imu, 1) ;
ab=chri7(mi,abl,x);
end

Dema#5: Induced Legendre polynomials.
The routine shown in the next box generates the first 20 recurrence coefficients of selected induced
orthogonal polynomials whenids the Legendre measure.

>> N=20; M=11;
>> abO=r_jacobi (N+M) ;
>> for m=[0 2 6 11]
ab=indop(N,m,ab0)
end

228

Table 2

p-coefficients of induced Legendre polynomials

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

k Br,0 Br.2 Br.6 Br,11
0 2.0000000000 0.1777777778 0.0007380787 0.0000007329
1 0.3333333333 0.5238095238 0.5030303030 0.5009523810
6 0.2517482517 0.1650550769 0.2947959861 0.2509913424
12 0.2504347826 0.2467060415 0.2521022519 0.1111727541
19 0.2501732502 0.2214990335 0.2274818789 0.2509466619

By symmetry, all thex-coefficients are zero. Selected values of flmefficients returned by the routine
(rounded to 10 decimal places) are showiiatble 2

The procedure is remarkably stable, not only for the Legendre measure, but also for other classical
measures, and farandm as large as 320; s¢#&1, Tables X and XI]

3. Sobolev orthogonal polynomials

These are polynomials orthogonal with respect to an inner product that involves derivatives in addition
to function values, each derivative having associated with it its own (positive) measure. Thus,

(p.)5 = fR p(1)q (D) dio(t) + /R P OGO da) + -+ /R PO (1) (1) dis (1), (18)

The Sobolev polynomial&z (- ; S)} are monic polynomials of degréeorthogonal with respect to the
inner product of (18),

=0, k#U,
(ﬁk,mz)s{>o k;:éﬁ. (19)

These polynomials no longer satisfy a three-term recurrence relation, but like any other system of monic
polynomials whose degrees increase by 1 from one polynomial to the next, they must satisfy a recurrence
relation of the extended form

k
mepa(t) =tm() = Y P (1), k=0,1,2.... (20)
j=0

In place of the Jacobi matrix, we now have an upper Hessenberg matrix of recurrence coefficients,

T8y BT B3 ﬁzzg ﬁﬁii‘
1 B /32 ﬁZig ﬁZi%
H,=| 0 L B - Ba B, 1)
0 0 0 --- g2 pit
Lo 0 0 - 1 gt

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 229

In the case = 0 corresponding to ordinary orthogonal polynomials, onefjas O for j > 1, and the
matrix H,, is tridiagonal. It can be symmetrized by a (real) diagonal similarity transformation and then
becomes the Jacobi matriy (d/g) (cf. (4)). Whens > 0, symmetrization is no longer possible, since
some of the eigenvalues B, may well be complex.

3.1. Moment-based algorithms
We define modified moments similarly as in (7), but now a separate set of them for each measure d
m” =/ o dig(t), k=0,1,2,..., 6=0,1,...,5. (22)
R

For simplicity, we use the same set of polynomiailg} for each measure and assume, as in (8), that they
satisfy a three-term recurrence relation. In analogy to (9), there is now a unigue map that takes the first
2n modified moments of all the measures, dnto the recurrence coefficien,ﬁ%,

125 6=0.1,....s > [, k=0.1,...n—1, j=01... k. (23)

The conditioning of this map has been studied48], and an algorithm, analogous to the modified
Chebyshev algorithm, developed (fo 1) in [15]. The corresponding routine in Matlab is

[B, normsq] = chebyshev_sob(N, mom, abm).

Here,Nis thenin (23), monthe 2x 2N array of the first 2/ modified moments corresponding téod
and di;, andabmthe (2N — 1) x 2 array of the recurrence coefficients in (8). The output variBiite
the N x N matrix of the recurrence coeﬁicierﬂ%, k=0,1,...,N—1,0< <k, whereﬁ’]‘. occupies the
positionB(j + 1, k + 1) of the matrixB; all remaining elements d are zero. The routine also returns
the optionalN-vectornormsq of the squared norm|$nk||§ of the Sobolev orthogonal polynomials. If
abmis absent in the list of input parameters, then ordinary moments are assymed(= 0).

Example 3.1. The polynomials of Althammdd].

These are the Sobolev orthogonal polynomials with 1 and dig(¢) = d¢, dA1(r) = ydr on[-1, 1],
wherey > 0. There is a fairly obvious choice of the polynomigis } for defining the modified moments,
namely the monic Legendre polynomials. All modified moments in this case, by orthogonality, are zero
except for

méo) =2, mél) = 2y.

In Matlab, the recurrence mattifor the Althammer polynomials is generated as shown in the box below
(whereN =n andg = 7).

>> N=20; g=1;

>> %g=0;

>> mom=zeros(2,2x*N) ;

>> mom(1,1)=2; mom(2,1)=2%g;
>> abm=r_jacobi(2*N-1);

>> B=chebyshev_sob(N,mom, abm) ;

230 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

g X107 5 X107
6 2
4+ 1
0 U A A P S N P M
alf
2L
-4 , -3 ,
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

Fig. 3. Legendre vs. Althammer polynomial.

Demat6: Legendre vs. Althammer polynomials.

Theroutineinthe box below generates and plots the Sobolev polynomial of dégi2@corresponding
tos = 1 andy = O (Legendre polynomial) resp.= 1 (Althammer polynomial). It is assumed that the
matrix B has already been generated by the routine for Althammer polynomials shown aboiewzh
andg=0respg=1.

>> N=20;
>> pi=zeros(N+1,1); np=500; y=zeros(np+1,1);
>> for it=0:np
t=-1+2%it/np;
pi(1)=1;
for k=1:N
temp=0;
for 1=1:k
temp=temp+B(1,k)*pi(k-1+1);
end
pi(k+1)=t*pi(k)-temp;
end
y(it+1)=pi(N+1);
end
>> x=linspace(-1,1,np+1);
>> hold on
>> plot(x’,y)
>> plot([-1 1],[0 0],’--?)
>> hold off

The plot for the Legendre polynomial is shownrFig. 3in the left frame, and the one for the Althammer
polynomial in the right frame.

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 231

Interestingly, for the Legendre polynomial the envelope of the extreme points is convex on top and
concave at the bottom, whereas for the Althammer polynomial it is the other way around. Note also that
m20(41) = 0.7607 x 10~° for the Legendre, angbo(+1) = O for the Althammer polynomial.

3.2. Discretization algorithm

The analogue for Sobolev orthogonal polynomials of the Darboux formulae (12) is

';:M, =01 .k (24)

(Tk—j> mk—j)s
with the inner product:, -)g defined as in (18). Th®iscretized Stieltjes Algorithpsimilarly as for
ordinary orthogonal polynomials, consists in combining the formulae (24) with the recurrence relation
(20), discretizing the inner products in (24) by suitable quadrature schemes. We chose to approximate the
absolutely continuous component of each measiydy a Gauss-type quadrature rule,

(P, Qds, Z w,(ca)p(xlgg))q(xlgg)), c=0,1,...,5, (25)
k=1

and to add on any discrete component &f d present. In Matlab, the quadrature schemes are identified
by anmd x 2(s + 1) arrayxw,

N I I
0 (s) (0) (5)
X X w w
=2
0 5 0 ®)
md 7 *md Wmd 0 Wmd

wheremd = max(n,). In each column okw the entries aftex,(,j) resp.w,(f,)

routine. The routine itself has the form

(if any) are ignored by the

B =stieltjes_sob(N, s, nd, xw, a0, same),

wherend = [ng, n1, ..., ns], a0 = ag(dlp), andsame is a logical variable to be set equal to 1 if all
quadrature rules have the same nodes, and equal to 0 otherwisaelf 1, the routine takes advantage
of significant simplifications that are possible and reduce running time.

Example 3.2. The Althammer polynomials, revisited.

The box below shows the generation of the recurrence mafiax the Althammer polynomials using
the routinestieltjes _sob.m..

>> N=20; g=1;

>> nd=[N N]; s=1; a0=0; same=1;

>> ab=r_jacobi(N);

>> zw=gauss(N,ab);

>> xw=[zw(:,1) zw(:,1) zw(:,2) g*zw(:,2)];
>> B=stieltjes_sob(N,s,nd,xw,a0,same);

232 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

The results are identical with those produced by the rowdiredyshev _sob.m . There is no restric-
tion, however, on the parametgwhen using the routinstieltjes _sob.m .

3.3. Zeros

If =(¢) is the vector of the firsh Sobolev orthogonal polynomials,
n' (1) = [ro(1), 71(0), . .., mu1(D)],
then the recurrence relation (20) can be written in matrix form as follows,
tn' (1) == (OH, + 1 (D)e],

wheree, is the last coordinate vector i®*. If t = 7, is a zero ofx,, the last term vanishes, implying

thatz, is an eigenvalue of the matrkt, and=' (z,) a corresponding (left) eigenvector. Thus, the zeros

of Sobolev orthogonal polynomials can be computed as eigenvalues of an upper Hessenberg matrix. In
Matlab, this is done by the routirmbzeros.m shown in the box below.

function z=sobzeros(n,N,B)
H=zeros(n);
for i=1:n
for j=1:n
if i==
H(i,3)=B(j,j);
elseif j==i-1
H(i,j)=1;
elseif j>=i
H(i,3j)=B(j-i+1,j);
end
end
end
z=sort(eig(H));

HereB is the recurrence matrix of ord& for the Sobolev orthogonal polynomials, ang. N. The
zeros are arranged in increasing order.

Demgat7: The zeros of the Althammer polynomial of degree 20 with1.

Assuming that the matriB has already been generated by either the modified Chebyshev algorithm or
the Stieltjes procedure as described in Sections 3.1 and 3.2, the box below shows the Matlab commands

W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234 233

and output (only the positive zeros are shown, rounded to 12 decimals).

<< N=20; z=sobzeros(N,N,B)
z =

.056392515636e-02
.39532838077e-01
.92325438959e-01
.34960935873e-01
.63745343244e-01
.75342384688e-01
.66859942239e-01
.35924777578e-01
.80740571465e-01
.00000000000e-01

= O ©OW 00 N U WN

Judging from how well the symmetry of the roots is satisfied, the results appear to be accurate to all
digits shown except the last, which may be in error by one or two units. Generating the Biatyix
the modified Chebyshev algorithm or Stieltjes’s procedure produces the same results to this accuracy,
but the Stieltjes procedure is considerably slower (by a factor of about 14) than the modified Chebyshev
algorithm.

References

[1] P. Althammer, Eine Erweiterung des Orthogonalitatsbegriffes bei Polynomen und deren Anwendung auf die beste
Approximation, J. Reine Angew. Math. 211 (1962) 192—-204.
[2] P.L.Chebyshev, Sur I'interpolation par la méthode des moindres carrés, Mem. Acad. Impér. Sci. St. Petersbourg (7)1(15)
(1859) 1-24. Also inreuvres |, pp. 473—-498.
[3] T.S. Chihara, An introduction to orthogonal polynomials, Mathematics and Its Applications, vol. 13, Gordon and Breach,
New York, 1978.
[4] B. Fischer, G.H. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J.
Comput. Appl. Math. 43 (1992) 99-115.
[5] G. Freud, Orthogonal Polynomials, Pergamon Press, New York, 1971 (English translation of Orthogonale Polynome,
Birkhduser, Basel, 1969.).
[6] D. Galant, An implementation of Christoffel’s theorem in the theory of orthogonal polynomials, Math. Comp. 25 (1971)
111-113.
[7] W. Gautschi, Construction of Gauss—Christoffel quadrature formulas, Math. Comp. 22 (1968) 251-270.
[8] W. Gautschi, An algorithmic implementation of the generalized Christoffel theorem, in: G. Himmerlin (Ed.), Numerical
Integration, Internat. Ser. Numer. Math. 57 (1982) 89-106, Birkhduser, Basel.
[9] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982) 289-317.
[10] W. Gautschi, On some orthogonal polynomials of interest in theoretical chemistry, BIT 24 (1984) 473—-483.
[11] W. Gautschi, Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type
quadrature rules, ACM Trans. Math. Software 20 (1994) 21-62.
[12] W. Gautschi, The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub, Electron.
Trans. Numer. Anal. 13 (2002) 119-147 (electronic).
[13] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford, 2004.
[14] W. Gautschi, S. Li, A set of orthogonal polynomials induced by a given orthogonal polynomial, Aequationes Math. 46
(1993) 174-198.
[15] W. Gautschi, M. Zhang, Computing orthogonal polynomials in Sobolev spaces, Numer. Math. 71 (1995) 159-183.

234 W. Gautschi / Journal of Computational and Applied Mathematics 178 (2005) 215-234

[16] W.B. Gragg, W.J. Harrod, The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math. 44
(1984) 317-335.

[17] J. Kautsky, G.H. Golub, On the calculation of Jacobi matrices, Linear Algebra Appl. 52/53 (1983) 439—455.

[18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J.
Res. Nat. Bur. Standards 45 (1950) 255—-282 Also in Collected Published Papers with Commentaries, vol. V, pp. 3-9-3-36.

[19] A.E. Russon, J.M. Blair, Rational function minimax approximations for the Bessel funckigtes) and K1(x), Report
AECL-3461, Atomic Energy of Canada Limited, Chalk River, Ontario, 1969.

[20] H. Rutishauser, On Jacobi rotation patterns, in: N.C. Metropolis, A.H. Taub, J. Todd, C.B. Tompkins (Eds.), Experimental
Arithmetics, High Speed Computing and Mathematics, Proc. Sympos. Appl. Math. 15 (1963) 219-239, American
Mathematical Society, Providence, RI.

[21] R.A. Sack, A.F. Donovan, An algorithm for Gaussian quadrature given modified moments, Numer. Math. 18 (1972)
465-478.

[22] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia of Mathematics and Its Applications, vol. 43, Cambridge
University Press, Cambridge, 1992.

[23] T.J.Stieltjes, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. Ecole Norm. Paris (3)1 (1884)
409-426. Also ineuvres |, pp. 377-396.

[24] P.K. Suetin, Classical Orthogonal Polynomials, second ed., Nauka, Moscow, 1979 (in Russian).

[25] G. Szegd, Orthogonal Polynomials, fourth ed., AMS Colloquium Publications, vol. 23, American Mathematical Society,
Providence, RI, 1975.

[26] J.C.Wheeler, Modified moments and Gaussian quadratures, Rocky Mountain J. Math. 4 (1974) 287—-296.

[27] R.Wong, Quadrature formulas for oscillatory integral transforms, Numer. Math. 39 (1982) 351-360.

[28] M. Zhang, Sensitivity analysis for computing orthogonal polynomials of Sobolev type, in: R.V.M. Zahar (Ed.),
Approximation and computation, Internat. Ser. Numer. Math. 119 (1994) 563-576, Birkh&user Boston, Boston, MA.

	Orthogonal polynomials (in Matlab)
	Introduction
	Orthogonal polynomials
	Recurrence coefficients
	Modified Chebyshev algorithm
	Discrete Stieltjes and Lanczos algorithm
	Discretization methods
	Modification algorithms

	Sobolev orthogonal polynomials
	Moment-based algorithms
	Discretization algorithm
	Zeros

	References

