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Abstract

Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment
is known only after a calibration. Computer codes that cati optical tweezers with high precision and reliability in the
(x, y)-plane orthogonal to the laser beam axigeweritten in MatLab (MathWorks Inc.) ahare presented here. The calibration
is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved
by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position
measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein—
Ornstein—Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for
parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence
of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency
(aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended “virtual” filtering caused by
the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters.
Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for
their interpretation: Independence .of and y-coordinates, Hooke’s law, exponential distribution of power spectral values,
uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix.
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Memory required to execute with typical dat&f order 4 times the size of the data file.

High speed storage requiredNone

No. of lines in distributed program, including test data, et&33 183

No. of bytes in distributed program, including test data, ettQ43 674

Distribution format: tar gzip file

Nature of physical problemCalibrate optical tweezers with precision by fitting theory to experimental power spectrum of
position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical
tweezers. Thereby determine spring constant of optical trap amvexgion factor for arbitrary-units-to-nanometers for detection
system.

Method of solutionElimination of cross-talk between quadrant photoetdi's output channels for pitisns (optional). Check

that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise
reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects: Frequency-dependent drag
force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for “virtual filtering”
caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear
least-squares fitting. Statistical support for fit is given, withesal plots suitable for insp&on of consistency and quality of

data and fit.

Restrictions on the complexity of the probldbata should be positions of bead doingonian motion while held by optical
tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high
experimental sampling rate: The sampling rate should be well above the characteristic frequency of the trap, the so-called
corner frequencyThus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform applied
requires the time series to contaifi @ata points, and long measurement time is obtained mith12—15. Finally, the optics

should be set to ensure a harmonic trapgingential in the range of positions visitegl the bead. The fittig procedure checks

for harmonic potential.

Typical running time{Tens of) minutes

Unusual features of the progranilone

References:The theoretical underpinnings for the procedure are found in [K. Berg-Sgrensen, H. Flyvbjerg, Rev. Sci. Instrum.
75 (3) (2004) 594].

0 2004 Elsevier B.V. All rights reserved.

PACS:87.80.-y; 06.20.Dk; 07.60.-j; 05.40.Jc

Keywords:Optical tweezers; Calibration; Power spectrum analysis

1. Introduction

In many applications of optical tweezdn biological physics, the tweezers are used to exert a prescribed force
or measure an unknown force. To do this, one must cdélfze tweezers. In some applications it is important
to know the force with precision, and in general a good calibration method provides a stringent check that a pair
of tweezers work as they are supposed to. A popular céililbranethod interprets the power spectrum of the
Brownian motion of a bead held with the tweezers. Tihee series of positions of the bead is measured with a
photo-diode [2,3], or, in some cases, with an interferometric technique [4]. This power spectrum is a stochastic
function, like the bead’s position, and is fitted with its theoretical expectation value [1,5]. One parameter thus
determined is theorner frequencyfc. It describes the ratio between Stokes’ friction coefficigntor rectilinear
motion with constant velocity of the bead in the fluid, and the trap’s spring constgit « /(2 yo). With f; and
yo known, the latter from Stokes’ law (or Faxén’s correction to it), soiis physical units. Another parameter thus
determined is the bead’s diffusion coefficight which is found in (arb. unitdys, where “arb. units” stands for
the arbitrary units in which the phot@tection system measures position. Ehesits depend on the amplification
factor we choose for convemiedata acquisition. SincB is already known in physical units through the Einstein
relationD = kgT /o, the translation between these arbitrary uaitd the Sl unit of length is determined, i.e., one
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has calibrated the photo-diodgonsequently, the forcexx experienced by the bead as a function of a measured
displacement of the bead in the trap is known.

The theoretical expectation value fitted to the expenitakepower spectral values can be either the Lorentzian
resulting from the Einstein—Ornstein—Uhlenbeck theory for Brownian motion [5], or it can be a more correct theory
that takes into account the frequency-dependence olifdeodynamic frictional force, the possible interaction
with a nearby cover slip, possible anti-aliasing filters built into the data acquisition electronics, possible “virtual
filtering” caused by the detection system, and possible aliasing caused by finite sampling rate [1]. Any or all of
these factors affecting the power spectrum can be takemaccount with the tweezer calibration program presented
here. A number of outputs, numerical and graphical, allow the program’s user to check data and fits for consistency
and quality.

2. Data processing

The time series of positions are first Fourier transformed. Each series is transformed as a single, long series,
and no “windowing function” [6] is applied before transfieation. Instead, noise reduction is done by blocking as
described and motivated below. For a coordinatecorded at intervalar for a time Tmeas the Fourier transform
is defined as

N
Xk = At Zézn/ktjxj, Sk =k/Tmeas= kfsample k=1,...,N. (1)
j=1

Herex; is the value recorded for at timet; = j Az, andN is the number of values recorded At = Tmeas The

experimental power spectrum foris thenP{® ( f;) = |£x|2/ Tmeas

If an interferometric technique is used for position determination, typically a time series for only one coordinate
is determined. If a quadrant photo-diode igd®s position detector, it measures the positigry) orthogonal to
the beam axis as combinations of voltages from the four quadrants. If these are numbered I, 11, Ill, and IV like the
quadrants of a 2D coordinate system, and their output voltages are défo¥d Vy, andV}y, then changes in
the voltage and ratios

Re=(Vi =V —Vin+Viv)/ V.=V, / Ve, (2
Ry=Vi+Viu—=Vi—Vi)/V,=V,/V, 3)
V:=Vi+Vi+ Vi + Viv (4)

are, to a good first approximation [2,7-9], proportional to changes in the bead’s pdsitipir), z being the
coordinate along the laser beam’s axis. To a slightly worse approximatimgy are proportional td/, and V.
In the text below,R, andR, could be replaced by, andV,. Here, we calibrate the trap in the,(y)-plane and
consider those coordinates only. The general discussion about power spectral analysis appliestotti@ate
as well, though.

The recorded coordinates may not be entirely independent, while true Cartesian coorﬂiaatb)s are. To
test for this, i.e., for cross-talk between the recorded channels, the tufﬁWfk) Re(R, (fk)R (fr)) is
calculated. If it vanishes over the entire frequency raiieand R, represent independent coordlnates. If not,
cross-talk is eliminated by a frequency-independergdmtransformation to independent coordinates, if such a
transformation can be found [1]. This transformation is highly over-determined, but can always be found, is our

experience. To judge wheth@® vanishes or notP(eX)(fk)/\/P(ex)(fk)P(ex)(fk) is blocked as described in the
following subsection. It is then’ pIotted before and after the transformation. The remainder of the analysis presented
here is done with independent coordinates, {x.y) refers to the transformed variables in cases where there was
cross-talk to eliminate.
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2.1. Blocking

Noise reduction is done by “blocking” [1,6]: A “block” of, consecutive data pointsf, P®I(£)) of the
experimental power spectruRi®( f) is replaced with one poiritf, P®¥( f)), where

-1 — 1
- . ex _ — (ex)
f= E I3 P = s E PP (). (5)

b £ Chlock feblock

As shown in [1], withny, sufficiently large, these blocked data points are to a good approximation Gaussian
distributed, so standard least-squares fitting applies to the blocked data. Their expectation value is the theoretical
power spectrumpP (), and their standard deviations are easily found:

(P(F))=P(f), 6)
o (P (f)) =0 (P (f))/v/rb=P(f)//nb. (7)

Blocking, as opposed to windowing, can reduce noise by data compression to points with any desired distribution
on the first axis. This is the reason we prefer blocking. Equidistant points on a linear and on a logarithmic axis
are two particularly useful choices, the former for fittimydata, the latter for dispjeof data in a log—log plot.
While windowing will produce the former, it cannot produce the latter. Also, windowing with semi-overlapping
windowing functions induces correlations between neighbouring data points.

For ease of notation, we omit the bar in what follows, ancPi&¥ ( f) denote blocked experimental data points.

2.2. Model-independent experimental test of harmonic trapping potential

The theory for the trapped bead assumes a harmonic trgpptential, hence a Gaussian Boltzmann distribution
of positions visited by the bead. To test that one actually has a harmonic potential in the experiment, the program
plots a histogram of positions visited by the trapped bead, and a fit of a Gaussian distribution to this histogram.

2.3. Hydrodynamics

Stokes’ law,yp = 67 pfuigie R, for the friction coefficientyg of a sphere of radiu® moving with constant
velocity and vanishing Reynolds number in a fluid with viscogityand mass densitysyig, is a low-frequency
approximation when used to describe Brownian motion, as it is in the Einstein—Ornstein—Uhlenbeck theory. The
correct frequency-dependent hydrodyneahidrag force that replaces Stokes Law was also derived by Stokes at
vanishing Reynolds number[1,10]. In the computer cods dbirect frequency-dependentdescription is an option.
Thus the user can find its effect by comparing results of fits of it with results of fits of the Einstein—Ornstein—
Uhlenbeck theory to the same data.

Frequency-dependent aiot, the hydrodynamical drag force is increased by nearby surfaces, such as the
microscope cover slip, the only surface of relevance here. In the case of Stokes Law for motion with constant
velocity parallel to a planar surface, Faxén’s formulaaes this effect with a truncated power serieRjft,
with ¢ the distance from the center of the bead to the cover slip,fatite bead’s radius. In the case where the
correct frequency-dependent friction is used, harmonic motion parallel to a planar surface at distisodeas a
larger drag force than in bulk, though the effect decreases with increasing frequency of the motion. It is described
by a formula derived in [11] and given also in [1]. At vahing frequency, this frequency-dependentformula agrees
with Faxén'’s formula in H.A. Lorentz’s original approximation [1,11].

Note that both these formulas for the friction from a nearby planar surface are approximations based on
expansion schemes: They are more precise the further away the surface is, and not relialdg¢ddpgaroaches 1.
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Thus, when frequency-gendent hydrodynamic effectsssaccounted for, the experimental data are fitted with
the theoretical spectrum

D)@

PO (f: R/E) =
(fo+ FOL — f2/fm)?+ (fBL)?

8

where

3R 3R 2 20
Re-" =1+ V/f/f~ 16+ 2 © (—E\/f/fv) cos(;w/fu)

and
im 2= 77+ 5 oo <2 VTR sin 2 VT ).

In these expressions, two new characteristic frequencies apfiearv/(x R?) and f,, = yo/(2wm), wherev is
the kinematic viscosity of the fluid, and is the mass of the bead. The program asks the user for bead’s mass
density, and calculates its massiass 47 ppeadR®/3.

When frequency-dependent hpdiynamic corrections anmgot accounted for, the theoretical spectrum fitted to
the data is a Lorentzian,

D/(27?)

5 9)
fE+ s

If this expression is used, and the distance to the cover slip is small, Stokes’ friction coeffigisimduld be
replaced by Faxén’s correction to it.

P(Lorentz) (f) —

2.4. Filters

Data-acquisition systems may have built-in filters that affect the recorded power spectrum. The effect of such
filters is included in our theory for the experimental power spectrum. The relevant filters are typically anti-aliasing
filters with known characteristics. For example, a first-order filter with roll-off frequefagy reduces the power
of its input Py( f) by a factor

P _ 1

Po(f) 1+ (f/faap)?
A typical optical tweezers setup may, in addition to such known electronic filters, contain an unintended virtual
filter in the form of a delayed respamfrom the photo-diode position detectigrsgem [12]. The form of this virtual
filter's characteristic is known [12,13],

P(f) (diode?2 1— O[(diOdQZ

I - -

(diode)\ o’
Po(f) 1+ (f/faqg )?

(10)

(11)

but its parametersf,gg (diodd ande(diode | are not, so they are fitted by the program, if this optional virtual filter is
included in the theory In [1] arguments are given why fitting is the optimal way to determine the relevant values
of these parameters.

If the Nyquist frequencyyyq = 1 fsample iS NOt @ good deal larger th (G098 and o (iode2 is small, as is
typically the case, it is difficult to separa; d'Ode anda/(@1°d8 They are highly covariant in this case. Fortunately,
they can be combined in@single parametef(d'c’deem,

P(f) 1+ a(d|ode)2(f/f(d|ode)2 1
R e A N SV e

(12)
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where we have introduced

diode eff i —-1/2 ,(diod
fédg) ee )E (1_a(d|ode)2) / fédg) e’ (13)

We note that the last expression in Eq. (12) is a simple Lorentzian, as for a first-order filtefsﬁﬁi‘?weeﬁ) as

3dB-frequency. In the program, the user can choose Whg‘tﬂ@de} and«(@99® are to be fitted separately, or
combined into theiagle parameteyr{Sio?®®™ which is then fitted. Iffuyq is very much larger thatfiqo®, the
low-frequency approximation that Eq. (11) is, is insu#itt to describe the filtering effect of the diode upfigq.

A more elaborate expression is needed [13]. The user can type in and try out expression of increasing complexity,

e.g., as described in [13].
2.5. Aliasing

The effect of a finite sampling frequency is called aliasing. Even with the use of anti-aliasing filters, it should
be accounted for. This is done by summing the theoretical spectrum,

P(aliased(f) — Z P(theor)o(f + 1 fsampld, (14)

n=—oo

where in practice a finite number of terms exhaust the sum. The re§ds€d 1), is the theory for the expectation
value of the recorded experimental power spectrBfif€°" is either p(Loren2 or p(hydio) ' nossibly multiplied by
filtering functions as described above.

2.6. Fits and their support
The program fits the theoretical power spectrum to the experimental data using general non-linear least-squares
fitting routines available with th@®ptimization Toolbowf MatLab (MathWorks Inc.), except for fits of Lorentzians,

for which analytical results from [1] are used. Inder to judge the quality of a given fit, the resulting value
of

(15)

x> 1 i()’k—)’theory(xk;Paramete')5>2

Nfree  Nfree Otheory(Xk; parametens

k=1
is quoted along with the fitted parameter values. In Eq. (15)is the number of data pointéxs, yk)

to which we fit, nfree is the number of degrees of freedom, i.8fee = n — npar With npar the number

of parameters fitted. Also in Eqg. (15heory is the function fitted, it is the expectation value of the
distribution according to which the data scatter according to our theory. The quatity, is the standard
deviation of this distribution. For the power spectya,— Pk(ex), Ytheory(Xk; parametens= PYI(fi) where(...)

stands for(Lorent or (hydro), filtered and/or aliased, Whileiheory(xi; parametens= (np) ~Y2PC)(fi). In
standard least-squares fitting2 is minimized. As shown in [1, Appendix E], when the parameters fitted
appear inoweory as here, maximum likelihood estimation does not reduce to least-squares fitting, that is,
to minimization of x2 in Eq. (15). Whenny, is large, it approximately does so. But in general, one must
minimize

n
x2+2 Z logotheory(xk; parameters
f=1

wherex? is given in Eq. (15). This is done by the program.
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Fitting is done after an exact rewriting of the expressiony®f1] to:

n (.)—1_ pEx-1\2
X2=Z<P(fk) Pk > (16)

0,
k=1 k

whereoy = Pk(ex)_l/(nb)l/z. When a fit has been obtained, the program computesupportfor the fit, also
known as the goodness-of-fit, or as thecking[6,14],

o

1 _ Niree — 2 X2

Pﬂfree(> X2) = 2(nfree—2)/2[(nfree_ 2)/2]! /x"free 1eXp(—x2/2) dr = Q( 2 ’ 7) (17)
X

Here, Q is the incompletd™-function and Eq. (17) gives the support irrespective of whether maximum likelihood

estimation is nearly the same as least-squares minimization or not, as lapgsadarge enough for the blocked

data to be normally distributed. The support is the prdbgbhat a repetition of the reasurement that produced

the data we fitted to, will produce data with a larger value férwhen x2 is computed using the theory given

by the values already found for the fitted parameters. This interpretation of the support presupposes that data are

Gaussian distributed about the theoretical expectation value. As blocking by a large factor guarantees that data

are Gaussian distributed (by virtue of the Central Limit Theorem), this condition is satisfied if the fitted theory

describes the data’s theoretical expectation value. If the support for the fit is good, this is typically the case, but

further evidence is provided by direct visual inspection made possible by residual plots produced by the program

and described below.

3. Usage

The program is called from the command window in MatLab (MathWorks Inc.). Once the main program is
initiated, the user is presented with a separate input wiridavhich all subsequent information is to be entered.
Fig. 1 shows the layout of the input window in the test case.

3.1. File specifications

First, the time series of data are read from the file specified by the user. The default format of the data file is

Vi) Vy(t) Vi(t1)

Vil(t2) Vy(12) Vi(t2) (18)

Vi(tn) Vy(in) Vi (tn)

where the time; is ; =i At, At = 1/fsample @ndN is the number of data points in the time series. The 2nd and
3rd columns are optional. The user may change the column numbpetgs andn, describing which columns
contain the data for the-, y-, andz-channels, respectively. The program reads the number of columns in the data
file, and sets as default values = 1, n, = 2 (for two or more columns), and, = 3 (for three or more columns).
Setting eithern, or n; equal to zero indicates, respectively, thatyasignal should be processed or no division by
V, should be done. If a data file has three or more columns, the program’s default action iRto-t3& / V, and
R, =V, /V, as the time series for the positions of the bead. These ratios are the signal processed by the program.
With n, = 0, the layout of the input window is different from that of Fig. 1: The push-buBreck for cross-talk
and the popup-button next to the té&liminate cross-talldo not appear.

The user should change the sampling frequency to the one with which his data were recorded; see Fig. 1. The
default valuefsample= 50 kHz is merely the one of our test case.
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Input window

Fig. 1.The input windowvhich opens when the main program is initiated from the command window of MatLab (MathWorks Inc.). The initial
layout only displays the push-buttpoad time seriek Once the user has activated this button and data have been read, the rest of the window
appears. Default values of all descriptive parameters are showr fietds to be filled by the user or accepted as is. The layout shown here is
the one that applies to the test case. Small diffees occur in other cases, as described in the text.

3.2. Initial investigation of data

Once the data has been read, the user must ddciess-talk between channels, i.e., betwegnand R,
should be eliminated. For this purpose, the user may pugiCtiezk for cross-talkoutton. This displays a figure,

Figure No. 2, showing blocked data points &% /,/ P{® P{®? versus frequency. If this quantity does not vanish
over the entire frequency range, elimination of cross-talk is advised.

If the user decides to eliminate cross-talk, the two parameters of the linear transformation that should do this,
are determined in a least-squares fit.

Subsequently, the user should inspect the data. WheVigne datd button is activated, three to seven figures
appear:

Figure No. 3: Appearsif elimination of cross-talk was chosen. The figure displays the quaity/ P p{*®
beforeandafter the transformation done to eliminate cross-talk. For clarity, data points after transforma-
tion are translated slightly towards higher frequencies. If elimination was succestéulthe transfor-

mation PS¥ /,/ P{® P{*¥ is identically zero at all frequencies, apart from noise.

Figure No. 4: Histogram of the measuredcoordinates. If cross-talk was eliminated, this histogram shows values
after elimination. Also shown, as a solid line, a Gaussian fitted to the histogram data, and, as two dotted
lines,+1 standard deviation, assuming binomially distributed counts in individual bins with expectation
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values equal to the Gaussian fit's integral across bacThe mean and standard deviation of the Gaussian
fitis displayed below the figure with? and the fit's backing.
The default number of bins in the histogramsiis, = 50, butnpi, can be changed for the individual

histogram in the box in the upper corner of the figure. If this number is changed and the return key pressed,
a new histogram is displayed with a new Gaussian fit.

Figure No. 5: Histogram of the signal for the-coordinate, if the data file contains data for two coordinates.
Number of bins can be changed as in Figure No. 4.

Figure No. 6: Power spectrum/spectra for thecoordinate (and-coordinate), log—log plot of data, blocked on
the logarithmic frequency axis.

Figure No. 7: Appears if elimination of cross-talk was chosendisplays the transformed power spectra, after
elimination of cross-talk.

Figure No. 8: Power spectrum for the-coordinate, log—log plot of data, using blocks of equal size on the linear
frequency axis. This allows the user to identify possible noise peaks in data.

Figure No. 9: As Figure No. 8, but for the-coordinate.

Some of the figures corresponding to the test case are shown in Fig. 2.
3.3. Specifications of fit

Before fitting the theory to the data, the user must decids #ie theory should include, i.e., which of the several
phenomena mentioned above it shouldetako account. On the left-hand siditlee input window (see Fig. 1), the
frequency range of data fitted to should be chosen, both for the Lorentzian fit, which is done analytically, and for
the more complete theory. The user also decides on the number of data in a:Blaid on the stopping criterion
for the fitting procedure, thierminal tolerancg15]. Default values are shown in Fig. 1. Where appropriate, they
correspond to the test case discussed in Section 4. The Lorentzian fit is used to determine first estimates for the
parameterg; and D fitted in the more complete theory, and the range used for the Lorentzian fit should not extend
up to frequencies where filters, frequey-dependence of friction, and aliasing matter. Neither should it extend
down to frequencies where beam-pointing instability attteolow-frequency effects esttnal to the experiment,
contribute to the power spectrum; see [1].

The number of data in a blocky, should be sufficiently large that the resulting data pointis Gaussian distributed
to a good approximation. As the original data points are exponentially distributed,[¢hould preferably not be
below 100. As a guideline, the number of blocked data points,N/(2np), which are the number of data points
fitted to, should lie in the range 50-200.

Aliasing, due to finite sampling frequency, can be accounted foshdtuld be accounted for unless data
acquisition withA—X conversion, or similar, is used. If in doubt, one can simply inspect the power spectrum:
If its slope seems to vanish #yq, as in the lower left and right part of Fig. 2, it is aliased, and aliasing must be
accounted for in order to fit it.

Virtual filtering by the phot-diode position detection system casabe accounted for. The user can choose
to do so by fitting one parametef. S %™ or two parametersy(@°d® and £{5°% The default action is taot
treat the position detection system as a virtual filter. Ifcacting for filtering is chosen, the program calculates
an initial value for £i50% (or £,599¢*™) by comparing the Lorentzian fit, with or without aliasing as chosen,
with the experimental value of the power spentrat the Nyquist frequency. The initial value fef?°9® s set to
«d°d® — 0 3. The user may change this initial value in the code.

On the right-hand side of the input window, the usecides whether the frequency-dependent hydrodynamic
friction should be used, or only Stokes’ law. If frequgratependent friction is chosen, the user must supply
information about the bead, its distanto the nearest surface, and the dgnasnd kinematic viscosity of the
surrounding fluid. If only Stokes’ law is used, the boxes to be filled with the above-mentioned information disappear
from the input window.
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Fig. 2. Four of the seven figures created when activating e data] button. Example is for the test case discussed later. Upper left:

Figure No. 3;P§$X) /+/ Px Py before and after elimination of cross-talk. Data points adtienination of cross-talk are slightly translated towards
higher frequency for clarity. Upper right: FigureolN4; Histogram of values for position coordinateLower left: Figure No. 6; Power spectra
before elimination of cross-talk. Loweight: Figure No. 8; Power spectrum forwith few data points per block.

Finally, the user defines (a) how many electronic fiiteshould be accounted for ihd fitting, and (b) their
functional form. The default is none.

3.4. Fitting

To carry out the fitting, the buttqlﬁit power spectrum/spect|rshould be pushed; see Fig. 1. The program does
a non-linear least-squares fit to the data for each coatd] with data processed as specified by the user, and
accounting for the various effects that were chosen by the user.

When the fit has been done, the user is presented with three (six) figures (examples of these figures for the test
case discussed later are shown in Fig. 3):

Figure No. 10: P(f) versusf in a log-log plot. Blocked data points and the fitted function are shown. The
function represents the theoretical expectation value for the data points, and is shown with a full line. Also
shown, as two dotted lines, atel standard deviation of the Gaussidistribution according to which the
data points scatter vertically about their expectation value.

Figure No. 11: P®(f)/Pf () versusf in a lin—lin plot (residual plot). For a perfect fit, this ratio scatters
about the value 1 according to a Gaussianrithigtion. Two horizontal dotted lines denaotel standard
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Fig. 3. The figures created when activating |ﬂ=‘1'& power spectrum/spectfhutton and th(#Show distribution of Pexp/Pﬂibutton. Example is

for the test run discussed later. Top: Figure No. PQy) versusf in a log—log plot. Solid line is the fit, dotted lines indicateone standard
deviation (known theoretically). Filled plotting symbols indicate daténts fitted to, open plotting symbols are those not included in the fit.
Middle: Figure No. ll;P(eX)(f)/P(ﬁt)(f) versusf in a lin—lin plot. Horizontal dotted lines indicat&1 standard deviation, according to
theory. Lower left: Figure No. 12;/IP(f) versus cogr f/fnyg). For a perfect aliased Lorentzian, this would be a straight line. Solid line:
Graph of fitted theoretical spectrum, i.e., the theoretical expectation value for the experimental data. Dottedl Istasidard deviation of
data’s vertical scatter about their expectation value, agugpr theory. Lower right: Figure No. 16; Distribution & (€¥ / p(fi (data points)
superposed with the expected expatie distribution (solid line- one standard deviation (dashed lines).
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deviation of this distribution. In this plot, the user may inspect the quality of the fit: For a perfect fit, 68%
=~ 2/3 of the data points fall within the two dotted lines anBDbutside.

Figure No. 12: 1/P(f) versus cofr f/fayq). Blocked data points, fitted function, agel standard deviation are
shown. For a power spectrum described by an alidswentzian, the data fall on a straight line when
plotted as here. As any deviance from a straight line is easily spotted by eye, so is the nature of the data in
this plot: It immediately reveals whether a Lorentzian fit is possible or not, and to which part of the data
it might be, if not in its entire frequency range.

Figure No. 13: Same as Figure No. 10, fercoordinate.

Figure No. 14: Same as Figure No. 11, fercoordinate.

Figure No. 15: Same as Figure No. 12, fercoordinate.

Then, the user can choose to inspect the supposedly exponential distribution of the unblocked power spec-
tral values about their expectation value. This serves as yet another check of the data. When pushing
|Show distribution of Pexp/Pfjtone (two) extra figures are produced:

Figure No. 16: Distribution of P /P x_coordinate, using the unblocked experimental values. Superposed,
the expected exponential distribution (solid line)} standard deviation (dashed lines).
Figure No. 17: Same as Figure No. 16, fercoordinate.

The resulting parameter valueg’, and the support of the fit are given below the figure as well as in the command
window of MatLab (MathWorks Inc.). Furthermore, thevaniances between the fitted parameters are displayed
both places.

In general, the command window displays the progress of the various fits while they are carried out. The
displayed parameter values describe the progress of the fitting algorithm, the Levenberg—Marquardt algorithm.
The corresponding MatLab help menu (MathWorks Indveg further information about definitions of step size,
parameter “Lambda,” etc. Also, any error messages or warnings issued by the algorithm during the fitting procedure
will appear in the command window. Error messages due to input of improper parameter values will appear in the
command window in the format “Error message from program tweezercalibtogether with error messages
from MatLab caused by the error. The latter have the format “??? ErrorAll final results of fits appear in the
relevant plot as well as in the command window.

4. Application

In the MatLab (MathWorks Inc.) command window, enter the comnfandset t i ngs, thenstart _fit.
Then proceed as follows:

(1) Click on the red buttofLoad time seriek This opens a file-organizer that shows files in the current working
directory of MatLab (MathWorks Inc.). Open the data file to be analyzed, change directory if necessary. The
input window now displays more buttons and boxes to be filled in, as shown in Fig. 1. Default numerical values
are those applying to the test case.

(2) Choose value folfsample If Needed, redefine column numbers, n,, andn;. If n, =0 the program does
not divide V, andV, by V_, but uses them undivided &; andR,, even if a third column with,-values is
present in the data file. H, = 0 the program only considers one coordinate (defined)ab the test case,
fsample=50 kHz,n, =1,n, =2, andn; = 3.

(3) If ny #0: Push the red buttdCheck for cross-talkand inspect the resulting Figure No. 2 in order to decide
whether or not to eliminate cross-talk between channels. The default action is to eliminate cross-talk and was
applied in the test case.
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(4) Click on the red buttofiview datd and wait while the data are processed: The program blocks the power
spectra, and fits the two parametérandc, of the transformation that eliminates cross-talk if this option was
chosen. Also, the program calculates histogranyosftions, and it fits a Gaussian to each histogram. During
this process, a number of windows are opened and the computer seems locked. Then, inspect as follows the
four to seven figures that pop up, each in its own window:

Figure No. 3: Check thatPjﬁsx)/, / Py Py after elimination of cross-talk is equal to zero modulo error bars.

Figure No. 4 (5): Compare the histogram(s) with the Gaussian fit shown as a solid line with two dashed lines
indicating+1 standard deviation of the scatter of bin-counts about the fitted Gauggiathe number
of degrees of freedomsee, and the support of the Gaussian fit are all given below each figure. The
number of bins in the histogram can be changed by entering a new number in the box in the upper right
corner.

Figure No. 6 (7): Blocked power spectra. Inspect for drift/pointing instabilities at low frequencies: Look for
excess power at frequencies belew50-100 Hz, depending on the quality of the data, where the
power spectrum should be constantfif is larger than~ 2—-300 Hz. An example of excess power
is seen for they-data in the lower left part of Fig. 2 for frequencies below 40 Hz. This power is
due to beam pointing instability. Also, in the same frame, noise at 50 Hz lifts a data-point near that
frequency.

Figure No. 8 (9): Inspect the power spectra for noise peaks at 50 Hz, 100 Hz, and at high frequencies,
appearing as sharp peaks in power spectral valoeslitinct frequencies, and excess power at low
frequencies. Noisy peaks and excess power from beam pointing instability are demonstrated in Fig. 7
of [11].

(5) If needed, redefine values for number of data points in a blagkermination tolerance in fit, fitting range
(given by fmin and fmax) for the Lorentzian fit and for the final fiand plotting range in final fit. Choose the
fitting range of the final fit based on Figures No. 6-9 as described above. Test case:

np =350

termination tolerance: 10~3
Lorentzian fit fmin =110 Hz Jfmax= 1000 Hz
Final fit Sfmin=110 Hz fmax= 25000 Hz
Plot Sfmin=50Hz Sfmax= 25000 Hz

(6) Choose whether the position detection system shoellttdated as a virtual filter or not. If treated like a
filter, choose which parameters should be fitted. Test case: Virtual filtering with two parameters. Default: No
filtering by position detection system.

(7) Decide whether the hydrodynamical drag force on the bead should be given by Stokes’ Law, or by Stokes’
frequency-dependent resufitequency dependent friction is used in test case. In that case, give parameters
describing bead and fluid. In test case, bead diamét505 um, height above surface: 11 um, bead and fluid
densities: 1 gcm?, and kinematic viscosity: 1 pfyis.

(8) If needed, redefine the number of electronic filters in the data acquisition pathway, and their functional form,
if needed. Test case: Two first-order filters wjtlys = 50 kHz and 80 kHz, respectively. Default: No filters.

(9) Click 0n| Fit power spectrum/specqmmd wait. Fitting may take some time (tens of minutes) and the computer
appears locked while fitting proceeds. For the test case, on a PC running MS Windows 2000 vs. 5.00, with an
Intel Pentium 4-processor, 2.00 GHz, 288 RAM, fitting took about fifteen minute$ Results of test case:

2 For users with long data files, faster F90 routines, based on NAGIib fitting packages, may be obtained from the authors. These routines
come without a user-friendly graphics interface, though.
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X y:

fc =643+ 14 Hz fe =641+ 14 Hz

D =(6.24+0.09) - 10? (arb. units§/s D = (6.48+0.09) - 10? (arb. units§/s
G008 _ 75+ 0.1 kHz £G0d8 _ 71+ 0.1 kHz

a(diod® — 0264 0.0 a(diod® — 0264 0.0

Xz/”freeZ 1.02 Xz/”freez 0.96

backing is 37% backing is 61%

(10) If wanted, click onShow distribution of Pexp/Pfiand wait.

Appendix A. List of program’s subroutines

fitsettings.m Sets path, sets defaults for a noen of plotting variables. Most likely, the user should edit this
routine, in particular change the path names to match the directories used by the user.

start_fit.m Main program. Creates input window.

load_time_series.m Subroutine that loads the time series. Then calls:

input_paral.m Readsfsample nx, 1y, and creates t push-button. Ifz, # 0, it also creates
the[Check for cross-talkpush-button. Calls:

input_paral_dec.m Reads whether elimination of cross-talk is chosen.

check.m Checks that value entered corresponds to the allowed interval (upper end of interval
included).

checkl.m Checks that value entered corresponds to the allowed interval (both ends of interval
included).

check2.m Checks that value entered is larger than zero.

input_para2.m Reads:p, reads fitting range for analytical Lorentzian fit, for final fit, for plotting range,
and tolerance of fit. Also reads how the ftims detection system should be treated.

input_para3.m Reads whether frequency-dependent hydrodyoéuiction is chosen. Creates the push-
buttong Fit power spectrum/specirand| Show distribution of Pexp/PfitCalls:

input_para3_hydro.m Reads the quantities needed forfitcounting for frequency-dependent
hydrodynamic friction R, ppead pfiuid, £, andv.

check_decorr.m Calculates and creates plot of cross-talk between channels.

decorr_decision.m Sets relevant system variable depending on whether elimination of cross-talk
between channels is wanted or not.

min_corr.m Function to be minimized in order to eliminate cross-talk.

view_data.m Shows histogram(s) of position(s) and power spectrum (spectra) using:

plot_histogram.m Creates histogram plots.

position_histogram_e.m Calculates position histogram and fits it with a Gaussian, integrated over each
bin.

caption.m Makes figure-captions.

free_erf.m Gaussian function, integrated over bins, to fit to the position histogram.
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free_gauss.m Gaussian function, used for display.

calc_powersp.m Calculate the (yet not blocked) power spectrum of time series.

plot_powerspectrum.m Creates log—log plots of blocked power spectra.

plot_powerspec_lin.m Creates log—log plots of power spectra blocked with few data points per block,
and blocked on the linear axis.

decorr_xy.m Performs the elimination of cross-talk between channels, i.e., calcméffgw P)EeX) P;,ex)
for transformed variables as function of trarmrsfiation’s parameters, and chooses these by fitting

P&/ P P to zero. Then plotS? /,/ P P{® before and after transformation and
P andP;,eX) after transformation.

plot_corrxy.m Creates plot o $* /,/ P& P{®¥.

diode_decision.m Sets a system variable depending on whether the position detection system acts as a virtual
filter, and whether one or two diode parameters are to be fitted when it does.

alias_decision.m Sets a system variable depending on wkesliasing should be accounted for or not.

g_diode.m Characteristic function of virtual filter of diode. Depends on whether one or two diode parameters are
chosen.

hydro_decision.m Sets a system variable depending on whetfeguency-dependehtydrodynamic friction is
used, or not.

filter_decision.m Sets a system variable and filter function, depending on number of filters chosen.

read_filter_function.m Reads user-defined filter function. Applies only when filters to be accounted for are more
complicated than fat-order filters.

fit_powerspectrum.m Performs the fit using:

lorentz_analyt.m Estimates initial values for the parametgksand D, based on analytic formulas for a
Lorentzian function [1].

P_hydro.m The functional form of the power spectruwhen frequency-geendent hydrodynamic
friction is chosen.

P_theor.m The functional form of the power spectrum. Uses P_hydro.m when relevant.

plot_fit.m Creates log—log plot of power spectrum versus frequency, along with the fit.

plot_data_div_fit.m Creates lin—lin plot of data/fit versus frequency.

plot_P_cos.m Creates lin—lin plot of 1P (f) versus co&r f/ fnyg)-

hist_decision.m Reads relevant system variable to determine if a histograi®t /P should be
calculated and plotted.

spectrum_histogram.m Calls the routine that plots distribution @€ / p(fit)

plot_Phist.m Creates histogram of unblockéd®® / PV and plots the normalized distribution.
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