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Abstract

Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given e
is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in
(x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibrati
is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is
by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D
measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the
Ornstein–Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial g
parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency de
of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling fre
(aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended “virtual” filtering cau
the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined p
Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory
their interpretation: Independence ofx- and y-coordinates, Hooke’s law, exponential distribution of power spectral va
uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix.
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Catalogue identifier:ADTV
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland.
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(MathWorks Inc.).
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Memory required to execute with typical data:Of order 4 times the size of the data file.
High speed storage required:None
No. of lines in distributed program, including test data, etc.:133 183
No. of bytes in distributed program, including test data, etc.:1 043 674
Distribution format: tar gzip file
Nature of physical problem:Calibrate optical tweezers with precision by fitting theory to experimental power spectru
position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in
tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detect
system.
Method of solution:Elimination of cross-talk between quadrant photo-diode’s output channels for positions (optional). Check
that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression a
reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects: Frequency-depend
force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for “virtual filte
caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard n
least-squares fitting. Statistical support for fit is given, with several plots suitable for inspection of consistency and quality o
data and fit.
Restrictions on the complexity of the problem:Data should be positions of bead doing Brownian motion while held by optica
tweezers. For high precision in final results, data should be time series measured over a long time, with sufficien
experimental sampling rate: The sampling rate should be well above the characteristic frequency of the trap, the
corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform
requires the time series to contain 2n data points, and long measurement time is obtained withn > 12–15. Finally, the optics
should be set to ensure a harmonic trappingpotential in the range of positions visited by the bead. The fitting procedure check
for harmonic potential.
Typical running time:(Tens of) minutes
Unusual features of the program:None
References:The theoretical underpinnings for the procedure are found in [K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. I
75 (3) (2004) 594].
 2004 Elsevier B.V. All rights reserved.

PACS:87.80.-y; 06.20.Dk; 07.60.-j; 05.40.Jc

Keywords:Optical tweezers; Calibration; Power spectrum analysis

1. Introduction

In many applications of optical tweezers in biological physics, the tweezers are used to exert a prescribed
or measure an unknown force. To do this, one must calibrate the tweezers. In some applications it is import
to know the force with precision, and in general a good calibration method provides a stringent check tha
of tweezers work as they are supposed to. A popular calibration method interprets the power spectrum of
Brownian motion of a bead held with the tweezers. Thetime series of positions of the bead is measured wi
photo-diode [2,3], or, in some cases, with an interferometric technique [4]. This power spectrum is a sto
function, like the bead’s position, and is fitted with its theoretical expectation value [1,5]. One paramet
determined is thecorner frequencyfc. It describes the ratio between Stokes’ friction coefficientγ0 for rectilinear
motion with constant velocity of the bead in the fluid, and the trap’s spring constantκ , fc = κ/(2πγ0). With fc and
γ0 known, the latter from Stokes’ law (or Faxén’s correction to it), so isκ in physical units. Another parameter th
determined is the bead’s diffusion coefficientD, which is found in (arb. units)2/s, where “arb. units” stands fo
the arbitrary units in which the photo detection system measures position. These units depend on the amplificatio
factor we choose for convenient data acquisition. SinceD is already known in physical units through the Einst
relationD = kBT/γ0, the translation between these arbitrary unitsand the SI unit of length is determined, i.e., o
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has calibrated the photo-diode. Consequently, the force−κx experienced by the bead as a function of a meas
displacementx of the bead in the trap is known.

The theoretical expectation value fitted to the experimental power spectral values can be either the Lorent
resulting from the Einstein–Ornstein–Uhlenbeck theory for Brownian motion [5], or it can be a more correct
that takes into account the frequency-dependence of thehydrodynamic frictional force, the possible interacti
with a nearby cover slip, possible anti-aliasing filters built into the data acquisition electronics, possible “
filtering” caused by the detection system, and possible aliasing caused by finite sampling rate [1]. Any o
these factors affecting the power spectrum can be taken into account with the tweezer calibration program prese
here. A number of outputs, numerical and graphical, allow the program’s user to check data and fits for con
and quality.

2. Data processing

The time series of positions are first Fourier transformed. Each series is transformed as a single, lon
and no “windowing function” [6] is applied before transformation. Instead, noise reduction is done by blocking
described and motivated below. For a coordinatex recorded at intervals�t for a timeTmeas, the Fourier transform
is defined as

(1)x̂k = �t

N∑
j=1

ei2πfktj xj , fk ≡ k/Tmeas= kfsample, k = 1, . . . ,N.

Herexj is the value recorded forx at timetj = j�t , andN is the number of values recorded,N�t = Tmeas. The

experimental power spectrum forx is thenP
(ex)
x (fk) ≡ |x̂k|2/Tmeas.

If an interferometric technique is used for position determination, typically a time series for only one coo
is determined. If a quadrant photo-diode is used as position detector, it measures the position(x, y) orthogonal to
the beam axis as combinations of voltages from the four quadrants. If these are numbered I, II, III, and IV
quadrants of a 2D coordinate system, and their output voltages are denotedVI,VII ,VIII , andVIV , then changes in
the voltage and ratios

(2)Rx ≡ (VI − VII − VIII + VIV )/Vz ≡ Vx/Vz,

(3)Ry ≡ (VI + VII − VIII − VIV )/Vz ≡ Vy/Vz,

(4)Vz ≡ VI + VII + VIII + VIV

are, to a good first approximation [2,7–9], proportional to changes in the bead’s position(x, y, z), z being the
coordinate along the laser beam’s axis. To a slightly worse approximation,x andy are proportional toVx andVy .
In the text below,Rx andRy could be replaced byVx andVy . Here, we calibrate the trap in the (x, y)-plane and
consider those coordinates only. The general discussion about power spectral analysis applies to thez-coordinate
as well, though.

The recorded coordinates may not be entirely independent, while true Cartesian coordinatesx andy are. To
test for this, i.e., for cross-talk between the recorded channels, the quantityP

(ex)
xy (fk) ≡ Re(R̂x(fk)R̂

∗
y (fk)) is

calculated. If it vanishes over the entire frequency range,Rx andRy represent independent coordinates. If n
cross-talk is eliminated by a frequency-independent linear transformation to independent coordinates, if suc
transformation can be found [1]. This transformation is highly over-determined, but can always be found

experience. To judge whetherP
(ex)
xy vanishes or not,P (ex)

xy (fk)/

√
P

(ex)
x (fk)P

(ex)
y (fk) is blocked as described in th

following subsection. It is then plotted before and after the transformation. The remainder of the analysis pr
here is done with independent coordinates, i.e.,(x, y) refers to the transformed variables in cases where there
cross-talk to eliminate.
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2.1. Blocking

Noise reduction is done by “blocking” [1,6]: A “block” ofnb consecutive data points(f,P (ex)(f )) of the
experimental power spectrumP (ex)(f ) is replaced with one point(f̄ ,P (ex)(f̄ )), where

(5)f̄ = 1

nb

∑
f ∈block

f ; P (ex) = 1

nb

∑
f ∈block

P (ex)(f ).

As shown in [1], withnb sufficiently large, these blocked data points are to a good approximation Ga
distributed, so standard least-squares fitting applies to the blocked data. Their expectation value is the th
power spectrum,P(f ), and their standard deviations are easily found:

(6)
〈
P (ex)(f̄ )〉 = P

(
f̄

)
,

(7)σ
(
P (ex)(f̄ )) = σ

(
P (ex)(f̄ ))

/
√

nb = P
(
f̄

)
/
√

nb.

Blocking, as opposed to windowing, can reduce noise by data compression to points with any desired dis
on the first axis. This is the reason we prefer blocking. Equidistant points on a linear and on a logarithm
are two particularly useful choices, the former for fitting to data, the latter for display of data in a log–log plot
While windowing will produce the former, it cannot produce the latter. Also, windowing with semi-overlap
windowing functions induces correlations between neighbouring data points.

For ease of notation, we omit the bar in what follows, and letP (ex)(f ) denote blocked experimental data poin

2.2. Model-independent experimental test of harmonic trapping potential

The theory for the trapped bead assumes a harmonic trapping potential, hence a Gaussian Boltzmann distribu
of positions visited by the bead. To test that one actually has a harmonic potential in the experiment, the
plots a histogram of positions visited by the trapped bead, and a fit of a Gaussian distribution to this histog

2.3. Hydrodynamics

Stokes’ law,γ0 = 6πρfluidµR, for the friction coefficientγ0 of a sphere of radiusR moving with constan
velocity and vanishing Reynolds number in a fluid with viscosityµ and mass densityρfluid, is a low-frequency
approximation when used to describe Brownian motion, as it is in the Einstein–Ornstein–Uhlenbeck theo
correct frequency-dependent hydrodynamical drag force that replaces Stokes Law was also derived by Stok
vanishing Reynolds number [1,10]. In the computer code, this correct frequency-dependentdescription is an op
Thus the user can find its effect by comparing results of fits of it with results of fits of the Einstein–Orn
Uhlenbeck theory to the same data.

Frequency-dependent ornot, the hydrodynamical drag force is increased by nearby surfaces, such
microscope cover slip, the only surface of relevance here. In the case of Stokes Law for motion with c
velocity parallel to a planar surface, Faxén’s formula describes this effect with a truncated power series inR/�,
with � the distance from the center of the bead to the cover slip, andR the bead’s radius. In the case where
correct frequency-dependent friction is used, harmonic motion parallel to a planar surface at distance� also has a
larger drag force than in bulk, though the effect decreases with increasing frequency of the motion. It is de
by a formula derived in [11] and given also in [1]. At vanishing frequency, this frequency-dependent formula ag
with Faxén’s formula in H.A. Lorentz’s original approximation [1,11].

Note that both these formulas for the friction from a nearby planar surface are approximations ba
expansion schemes: They are more precise the further away the surface is, and not reliable whenR/� approaches 1
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Thus, when frequency-dependent hydrodynamic effects are accounted for, the experimental data are fitted w
the theoretical spectrum

(8)P (hydro)(f ;R/�) = D/(2π2)
Reγ
γ0

(fc + f
Imγ
γ0

− f 2/fm)2 + (f
Reγ
γ0

)2

where

Re
γ

γ0
= 1+ √

f/fν − 3R

16�
+ 3R

4�
exp

(
−2�

R

√
f/fν

)
cos

(
2�

R

√
f/fν

)

and

Im
γ

γ0
= −√

f/fν + 3

4

R

�
exp

(
−2�

R

√
f/fν

)
sin

(
2�

R

√
f/fν

)
.

In these expressions, two new characteristic frequencies appear:fν ≡ ν/(πR2) andfm ≡ γ0/(2πm), whereν is
the kinematic viscosity of the fluid, andm is the mass of the bead. The program asks the user for bead’s
density, and calculates its mass asm ≡ 4πρbeadR

3/3.
When frequency-dependent hydrodynamic corrections arenot accounted for, the theoretical spectrum fitted

the data is a Lorentzian,

(9)P (Lorentz)(f ) = D/(2π2)

f 2
c + f 2 .

If this expression is used, and the distance to the cover slip is small, Stokes’ friction coefficientγ0 should be
replaced by Faxén’s correction to it.

2.4. Filters

Data-acquisition systems may have built-in filters that affect the recorded power spectrum. The effect
filters is included in our theory for the experimental power spectrum. The relevant filters are typically anti-a
filters with known characteristics. For example, a first-order filter with roll-off frequencyf3dB reduces the powe
of its inputP0(f ) by a factor

(10)
P(f )

P0(f )
= 1

1+ (f/f3dB)2 .

A typical optical tweezers setup may, in addition to such known electronic filters, contain an unintended
filter in the form of a delayed response from the photo-diode position detection system [12]. The form of this virtua
filter’s characteristic is known [12,13],

(11)
P(f )

P0(f )
= α(diode)2 + 1− α(diode)2

1+ (f/f
(diode)
3dB )2

,

but its parameters,f (diode)
3dB andα(diode), are not, so they are fitted by the program, if this optional virtual filte

included in the theory. In [1] arguments are given why fitting is the optimal way to determine the relevant
of these parameters.

If the Nyquist frequency,fNyq ≡ 1
2fsample, is not a good deal larger thanf (diode)

3dB andα(diode)2 is small, as is

typically the case, it is difficult to separatef (diode)
3dB andα(diode). They are highly covariant in this case. Fortunate

they can be combined intoa single parameter,f (diode,eff)
3dB ,

(12)
P(f )

P0(f )
= 1+ α(diode)2(f/f

(diode)
3dB )2

1+ (f/f
(diode)
3dB )2

≈ 1

1+ (f/f
(diode,eff)
3dB )2
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where we have introduced

(13)f
(diode,eff)
3dB ≡ (

1− α(diode)2)−1/2
f

(diode)
3dB .

We note that the last expression in Eq. (12) is a simple Lorentzian, as for a first-order filter withf
(diode,eff)
3dB as

3dB-frequency. In the program, the user can choose whetherf
(diode)
3dB andα(diode) are to be fitted separately,

combined into the single parameterf (diode,eff)
3dB which is then fitted. IffNyq is very much larger thanf (diode)

3dB , the
low-frequency approximation that Eq. (11) is, is insufficient to describe the filtering effect of the diode up tofNyq.
A more elaborate expression is needed [13]. The user can type in and try out expression of increasing co
e.g., as described in [13].

2.5. Aliasing

The effect of a finite sampling frequency is called aliasing. Even with the use of anti-aliasing filters, it s
be accounted for. This is done by summing the theoretical spectrum,

(14)P (aliased)(f ) =
∞∑

n=−∞
P (theory)(f + nfsample),

where in practice a finite number of terms exhaust the sum. The result,P (aliased)(f ), is the theory for the expectatio
value of the recorded experimental power spectrum.P (theory) is eitherP (Lorentz) or P (hydro), possibly multiplied by
filtering functions as described above.

2.6. Fits and their support

The program fits the theoretical power spectrum to the experimental data using general non-linear leas
fitting routines available with theOptimization Toolboxof MatLab (MathWorks Inc.), except for fits of Lorentzian
for which analytical results from [1] are used. In order to judge the quality of a given fit, the resulting va
of

(15)
χ2

nfree
= 1

nfree

n∑
k=1

(
yk − ytheory(xk;parameters)

σtheory(xk;parameters)

)2

is quoted along with the fitted parameter values. In Eq. (15),n is the number of data points(xk, yk)

to which we fit, nfree is the number of degrees of freedom, i.e.,nfree = n − npar with npar the number
of parameters fitted. Also in Eq. (15),ytheory is the function fitted, it is the expectation value of t
distribution according to which the data scatter according to our theory. The quantityσtheory is the standard

deviation of this distribution. For the power spectra,yk = P
(ex)
k , ytheory(xk;parameters) = P (...)(fk) where(. . .)

stands for(Lorentz) or (hydro), filtered and/or aliased, whileσtheory(xk;parameters) = (nb)
−1/2P (...)(fk). In

standard least-squares fitting,χ2 is minimized. As shown in [1, Appendix E], when the parameters fi
appear inσtheory as here, maximum likelihood estimation does not reduce to least-squares fitting, t
to minimization of χ2 in Eq. (15). Whennb is large, it approximately does so. But in general, one m
minimize

χ2 + 2
n∑

k=1

logσtheory(xk;parameters)

whereχ2 is given in Eq. (15). This is done by the program.
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Fitting is done after an exact rewriting of the expression forχ2 [1] to:

(16)χ2 =
n∑

k=1

(
P(fk)

(...)−1 − P
(ex)−1
k

σk

)2

whereσk = P
(ex)−1
k /(nb)

1/2. When a fit has been obtained, the program computes thesupport for the fit, also
known as the goodness-of-fit, or as thebacking[6,14],

(17)Pnfree

(
> χ2) ≡ 1

2(nfree−2)/2[(nfree− 2)/2]!
∞∫

χ

xnfree−1 exp
(−x2/2

)
dx = Q

(
nfree− 2

2
,
χ2

2

)
.

Here,Q is the incomplete�-function and Eq. (17) gives the support irrespective of whether maximum likeli
estimation is nearly the same as least-squares minimization or not, as long asnb is large enough for the blocke
data to be normally distributed. The support is the probability that a repetition of the measurement that produce
the data we fitted to, will produce data with a larger value forχ2 whenχ2 is computed using the theory give
by the values already found for the fitted parameters. This interpretation of the support presupposes tha
Gaussian distributed about the theoretical expectation value. As blocking by a large factor guarantees
are Gaussian distributed (by virtue of the Central Limit Theorem), this condition is satisfied if the fitted
describes the data’s theoretical expectation value. If the support for the fit is good, this is typically the ca
further evidence is provided by direct visual inspection made possible by residual plots produced by the p
and described below.

3. Usage

The program is called from the command window in MatLab (MathWorks Inc.). Once the main prog
initiated, the user is presented with a separate input window in which all subsequent information is to be enter
Fig. 1 shows the layout of the input window in the test case.

3.1. File specifications

First, the time series of data are read from the file specified by the user. The default format of the data fi

(18)

Vx(t1) Vy(t1) Vz(t1)

Vx(t2) Vy(t2) Vz(t2)
...

...
...

Vx(tN ) Vy(tN ) Vz(tN )

where the timeti is ti = i�t , �t = 1/fsample, andN is the number of data points in the time series. The 2nd
3rd columns are optional. The user may change the column numbersnx,ny andnz describing which column
contain the data for thex-, y-, andz-channels, respectively. The program reads the number of columns in th
file, and sets as default valuesnx = 1, ny = 2 (for two or more columns), andnz = 3 (for three or more columns
Setting eitherny or nz equal to zero indicates, respectively, that noy-signal should be processed or no division
Vz should be done. If a data file has three or more columns, the program’s default action is to useRx = Vx/Vz and
Ry = Vy/Vz as the time series for the positions of the bead. These ratios are the signal processed by the
With ny = 0, the layout of the input window is different from that of Fig. 1: The push-buttonCheck for cross-talk
and the popup-button next to the textEliminate cross-talkdo not appear.

The user should change the sampling frequency to the one with which his data were recorded; see Fi
default valuefsample= 50 kHz is merely the one of our test case.
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Fig. 1.The input windowwhich opens when the main program is initiated from the command window of MatLab (MathWorks Inc.). The
layout only displays the push-buttonLoad time series. Once the user has activated this button and data have been read, the rest of the
appears. Default values of all descriptive parameters are shown in the fields to be filled by the user or accepted as is. The layout shown h
the one that applies to the test case. Small differences occur in other cases, as described in the text.

3.2. Initial investigation of data

Once the data has been read, the user must decideif cross-talk between channels, i.e., betweenRx andRy ,
should be eliminated. For this purpose, the user may push theCheck for cross-talkbutton. This displays a figure

Figure No. 2, showing blocked data points ofP
(ex)
xy /

√
P

(ex)
x P

(ex)
y versus frequency. If this quantity does not van

over the entire frequency range, elimination of cross-talk is advised.
If the user decides to eliminate cross-talk, the two parameters of the linear transformation that should

are determined in a least-squares fit.
Subsequently, the user should inspect the data. When theView data button is activated, three to seven figu

appear:

Figure No. 3: Appears if elimination of cross-talk was chosen. The figure displays the quantityP
(ex)
xy /

√
P

(ex)
x P

(ex)
y

beforeandafter the transformation done to eliminate cross-talk. For clarity, data points after transf
tion are translated slightly towards higher frequencies. If elimination was successful,after the transfor-

mationP
(ex)
xy /

√
P

(ex)
x P

(ex)
y is identically zero at all frequencies, apart from noise.

Figure No. 4: Histogram of the measuredx-coordinates. If cross-talk was eliminated, this histogram shows va
after elimination. Also shown, as a solid line, a Gaussian fitted to the histogram data, and, as two
lines,±1 standard deviation, assuming binomially distributed counts in individual bins with expec
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values equal to the Gaussian fit’s integral across eachbin. The mean and standard deviation of the Gaus
fit is displayed below the figure withχ2 and the fit’s backing.

The default number of bins in the histograms isnbin = 50, butnbin can be changed for the individu
histogram in the box in the upper corner of the figure. If this number is changed and the return key p
a new histogram is displayed with a new Gaussian fit.

Figure No. 5: Histogram of the signal for they-coordinate, if the data file contains data for two coordina
Number of bins can be changed as in Figure No. 4.

Figure No. 6: Power spectrum/spectra for thex-coordinate (andy-coordinate), log–log plot of data, blocked o
the logarithmic frequency axis.

Figure No. 7: Appears if elimination of cross-talk was chosen. It displays the transformed power spectra, a
elimination of cross-talk.

Figure No. 8: Power spectrum for thex-coordinate, log–log plot of data, using blocks of equal size on the li
frequency axis. This allows the user to identify possible noise peaks in data.

Figure No. 9: As Figure No. 8, but for they-coordinate.

Some of the figures corresponding to the test case are shown in Fig. 2.

3.3. Specifications of fit

Before fitting the theory to the data, the user must decide what the theory should include, i.e., which of the seve
phenomena mentioned above it should take into account. On the left-hand side of the input window (see Fig. 1), th
frequency range of data fitted to should be chosen, both for the Lorentzian fit, which is done analytically,
the more complete theory. The user also decides on the number of data in a block,nb, and on the stopping criterio
for the fitting procedure, theterminal tolerance[15]. Default values are shown in Fig. 1. Where appropriate, t
correspond to the test case discussed in Section 4. The Lorentzian fit is used to determine first estimate
parametersfc andD fitted in the more complete theory, and the range used for the Lorentzian fit should not
up to frequencies where filters, frequency-dependence of friction, and aliasing matter. Neither should it ex
down to frequencies where beam-pointing instability and other low-frequency effects external to the experimen
contribute to the power spectrum; see [1].

The number of data in a block,nb, should be sufficiently large that the resulting data point is Gaussian distri
to a good approximation. As the original data points are exponentially distributed [1],nb should preferably not b
below 100. As a guideline, the number of blocked data points,n = N/(2nb), which are the number of data poin
fitted to, should lie in the range 50–200.

Aliasing, due to finite sampling frequency, can be accounted for. Itshould be accounted for unless da
acquisition with∆–Σ conversion, or similar, is used. If in doubt, one can simply inspect the power spec
If its slope seems to vanish atfNyq, as in the lower left and right part of Fig. 2, it is aliased, and aliasing mus
accounted for in order to fit it.

Virtual filtering by the photo-diode position detection system can also be accounted for. The user can cho
to do so by fitting one parameter,f

(diode,eff)
3dB , or two parameters,α(diode) andf

(diode)
3dB . The default action is tonot

treat the position detection system as a virtual filter. If accounting for filtering is chosen, the program calcula
an initial value forf (diode)

3dB (or f
(diode,eff)
3dB ) by comparing the Lorentzian fit, with or without aliasing as chos

with the experimental value of the power spectrum at the Nyquist frequency. The initial value forα(diode) is set to
α(diode) = 0.3. The user may change this initial value in the code.

On the right-hand side of the input window, the user decides whether the frequency-dependent hydrodyna
friction should be used, or only Stokes’ law. If frequency-dependent friction is chosen, the user must sup
information about the bead, its distance to the nearest surface, and the density and kinematic viscosity of the
surrounding fluid. If only Stokes’ law is used, the boxes to be filled with the above-mentioned information dis
from the input window.
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Fig. 2. Four of the seven figures created when activating theView data button. Example is for the test case discussed later. Upper

Figure No. 3;P (ex)
xy /

√
PxPy before and after elimination of cross-talk. Data points afterelimination of cross-talk are slightly translated towar

higher frequency for clarity. Upper right: Figure No. 4; Histogram of values for position coordinatex. Lower left: Figure No. 6; Power spectr
before elimination of cross-talk. Lowerright: Figure No. 8; Power spectrum forx with few data points per block.

Finally, the user defines (a) how many electronic filters should be accounted for in the fitting, and (b) their
functional form. The default is none.

3.4. Fitting

To carry out the fitting, the buttonFit power spectrum/spectrashould be pushed; see Fig. 1. The program d
a non-linear least-squares fit to the data for each coordinate, with data processed as specified by the user
accounting for the various effects that were chosen by the user.

When the fit has been done, the user is presented with three (six) figures (examples of these figures fo
case discussed later are shown in Fig. 3):

Figure No. 10: P(f ) versusf in a log–log plot. Blocked data points and the fitted function are shown.
function represents the theoretical expectation value for the data points, and is shown with a full lin
shown, as two dotted lines, are±1 standard deviation of the Gaussiandistribution according to which th
data points scatter vertically about their expectation value.

Figure No. 11: P (ex)(f )/P (fit)(f ) versusf in a lin–lin plot (residual plot). For a perfect fit, this ratio scatt
about the value 1 according to a Gaussian distribution. Two horizontal dotted lines denote±1 standard
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fit.
to
line:
f

Fig. 3. The figures created when activating theFit power spectrum/spectrabutton and theShow distribution of Pexp/Pfitbutton. Example is
for the test run discussed later. Top: Figure No. 10;P (f ) versusf in a log–log plot. Solid line is the fit, dotted lines indicate± one standard
deviation (known theoretically). Filled plotting symbols indicate datapoints fitted to, open plotting symbols are those not included in the
Middle: Figure No. 11;P (ex)(f )/P (fit)(f ) versusf in a lin–lin plot. Horizontal dotted lines indicate±1 standard deviation, according
theory. Lower left: Figure No. 12; 1/P (f ) versus cos(πf/fNyq). For a perfect aliased Lorentzian, this would be a straight line. Solid
Graph of fitted theoretical spectrum, i.e., the theoretical expectation value for the experimental data. Dotted lines:±1 standard deviation o
data’s vertical scatter about their expectation value, according to theory. Lower right: Figure No. 16; Distribution ofP (ex)/P (fit) (data points)
superposed with the expected exponential distribution (solid line)± one standard deviation (dashed lines).
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deviation of this distribution. In this plot, the user may inspect the quality of the fit: For a perfect fit,
� 2/3 of the data points fall within the two dotted lines and 1/3 outside.

Figure No. 12: 1/P (f ) versus cos(πf/fNyq). Blocked data points, fitted function, and±1 standard deviation ar
shown. For a power spectrum described by an aliased Lorentzian, the data fall on a straight line wh
plotted as here. As any deviance from a straight line is easily spotted by eye, so is the nature of th
this plot: It immediately reveals whether a Lorentzian fit is possible or not, and to which part of th
it might be, if not in its entire frequency range.

Figure No. 13: Same as Figure No. 10, fory-coordinate.
Figure No. 14: Same as Figure No. 11, fory-coordinate.
Figure No. 15: Same as Figure No. 12, fory-coordinate.

Then, the user can choose to inspect the supposedly exponential distribution of the unblocked pow
tral values about their expectation value. This serves as yet another check of the data. When
Show distribution of Pexp/Pfit, one (two) extra figures are produced:

Figure No. 16: Distribution ofP (ex)/P (fit), x-coordinate, using the unblocked experimental values. Superp
the expected exponential distribution (solid line)±1 standard deviation (dashed lines).

Figure No. 17: Same as Figure No. 16, fory-coordinate.

The resulting parameter values,χ2, and the support of the fit are given below the figure as well as in the com
window of MatLab (MathWorks Inc.). Furthermore, the covariances between the fitted parameters are displ
both places.

In general, the command window displays the progress of the various fits while they are carried o
displayed parameter values describe the progress of the fitting algorithm, the Levenberg–Marquardt al
The corresponding MatLab help menu (MathWorks Inc.) gives further information about definitions of step siz
parameter “Lambda,” etc. Also, any error messages or warnings issued by the algorithm during the fitting pr
will appear in the command window. Error messages due to input of improper parameter values will appe
command window in the format “Error message from program tweezercalib:. . .” together with error message
from MatLab caused by the error. The latter have the format “??? Error. . .”. All final results of fits appear in the
relevant plot as well as in the command window.

4. Application

In the MatLab (MathWorks Inc.) command window, enter the commandfitsettings, thenstart_fit.
Then proceed as follows:

(1) Click on the red buttonLoad time series. This opens a file-organizer that shows files in the current wor
directory of MatLab (MathWorks Inc.). Open the data file to be analyzed, change directory if necessa
input window now displays more buttons and boxes to be filled in, as shown in Fig. 1. Default numerical
are those applying to the test case.

(2) Choose value forfsample. If needed, redefine column numbersnx , ny , andnz. If nz = 0 the program doe
not divideVx andVy by Vz, but uses them undivided asRx andRy , even if a third column withVz-values is
present in the data file. Ifny = 0 the program only considers one coordinate (defined asx). In the test case
fsample= 50 kHz,nx = 1, ny = 2, andnz = 3.

(3) If ny �= 0: Push the red buttonCheck for cross-talk, and inspect the resulting Figure No. 2 in order to dec
whether or not to eliminate cross-talk between channels. The default action is to eliminate cross-talk
applied in the test case.
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(4) Click on the red buttonView data and wait while the data are processed: The program blocks the p
spectra, and fits the two parameters,b andc, of the transformation that eliminates cross-talk if this option w
chosen. Also, the program calculates histograms ofpositions, and it fits a Gaussian to each histogram. Du
this process, a number of windows are opened and the computer seems locked. Then, inspect as fo
four to seven figures that pop up, each in its own window:

Figure No. 3: Check thatP (ex)
xy /

√
PxPy after elimination of cross-talk is equal to zero modulo error bars.

Figure No. 4 (5): Compare the histogram(s) with the Gaussian fit shown as a solid line with two dashe
indicating±1 standard deviation of the scatter of bin-counts about the fitted Gaussian.χ2, the number
of degrees of freedomnfree, and the support of the Gaussian fit are all given below each figure
number of bins in the histogram can be changed by entering a new number in the box in the upp
corner.

Figure No. 6 (7): Blocked power spectra. Inspect for drift/pointing instabilities at low frequencies: Look
excess power at frequencies below∼ 50–100 Hz, depending on the quality of the data, where
power spectrum should be constant iffc is larger than∼ 2–300 Hz. An example of excess pow
is seen for they-data in the lower left part of Fig. 2 for frequencies below 40 Hz. This powe
due to beam pointing instability. Also, in the same frame, noise at 50 Hz lifts a data-point ne
frequency.

Figure No. 8 (9): Inspect the power spectra for noise peaks at 50 Hz, 100 Hz, and at high freque
appearing as sharp peaks in power spectral values for distinct frequencies, and excess power at
frequencies. Noisy peaks and excess power from beam pointing instability are demonstrated in
of [11].

(5) If needed, redefine values for number of data points in a block,nb, termination tolerance in fit, fitting rang
(given byfmin andfmax) for the Lorentzian fit and for the final fit, and plotting range in final fit. Choose th
fitting range of the final fit based on Figures No. 6–9 as described above. Test case:

nb = 350

termination tolerance= 10−3

Lorentzian fit fmin = 110 Hz fmax = 1000 Hz

Final fit fmin = 110 Hz fmax = 25 000 Hz

Plot fmin = 50 Hz fmax = 25 000 Hz

(6) Choose whether the position detection system should be treated as a virtual filter or not. If treated like
filter, choose which parameters should be fitted. Test case: Virtual filtering with two parameters. Defa
filtering by position detection system.

(7) Decide whether the hydrodynamical drag force on the bead should be given by Stokes’ Law, or by
frequency-dependent result.Frequency dependent friction is used in test case. In that case, give para
describing bead and fluid. In test case, bead diameter: 0.505 µm, height above surface: 11 µm, bead and
densities: 1 g/cm3, and kinematic viscosity: 1 µm2/s.

(8) If needed, redefine the number of electronic filters in the data acquisition pathway, and their function
if needed. Test case: Two first-order filters withf3dB = 50 kHz and 80 kHz, respectively. Default: No filter

(9) Click on Fit power spectrum/spectraand wait. Fitting may take some time (tens of minutes) and the com
appears locked while fitting proceeds. For the test case, on a PC running MS Windows 2000 vs. 5.00
Intel Pentium 4-processor, 2.00 GHz, 256MB RAM, fitting took about fifteen minutes.2 Results of test case

2 For users with long data files, faster F90 routines, based on NAGlib fitting packages, may be obtained from the authors. Thes
come without a user-friendly graphics interface, though.
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fc = 643± 14 Hz fc = 641± 14 Hz
D = (6.24± 0.09) · 102 (arb. units)2/s D = (6.48± 0.09) · 102 (arb. units)2/s

f
(diode)
3dB = 7.5± 0.1 kHz f

(diode)
3dB = 7.1± 0.1 kHz

α(diode) = 0.26± 0.0 α(diode) = 0.26± 0.0
χ2/nfree= 1.02 χ2/nfree= 0.96
backing is 37% backing is 61%

(10) If wanted, click onShow distribution of Pexp/Pfitand wait.

Appendix A. List of program’s subroutines

fitsettings.m Sets path, sets defaults for a number of plotting variables. Most likely, the user should edit t
routine, in particular change the path names to match the directories used by the user.

start_fit.m Main program. Creates input window.
load_time_series.mSubroutine that loads the time series. Then calls:

input_para1.m Readsfsample, nx , ny , and creates theView data push-button. Ifny �= 0, it also creates
the Check for cross-talkpush-button. Calls:

input_para1_dec.m Reads whether elimination of cross-talk is chosen.
check.m Checks that value entered corresponds to the allowed interval (upper end of in

included).
check1.m Checks that value entered corresponds to the allowed interval (both ends of in

included).
check2.m Checks that value entered is larger than zero.

input_para2.m Readsnb, reads fitting range for analytical Lorentzian fit, for final fit, for plotting ran
and tolerance of fit. Also reads how the position detection system should be treated.

input_para3.m Reads whether frequency-dependent hydrodynamic friction is chosen. Creates the pus
buttons Fit power spectrum/spectraand Show distribution of Pexp/Pfit. Calls:

input_para3_hydro.m Reads the quantities needed for fitaccounting for frequency-depende
hydrodynamic friction,R, ρbead, ρfluid, �, andν.

check_decorr.m Calculates and creates plot of cross-talk between channels.
decorr_decision.m Sets relevant system variable depending on whether elimination of cros

between channels is wanted or not.
min_corr.m Function to be minimized in order to eliminate cross-talk.

view_data.m Shows histogram(s) of position(s) and power spectrum (spectra) using:

plot_histogram.m Creates histogram plots.
position_histogram_e.m Calculates position histogram and fits it with a Gaussian, integrated over

bin.
caption.m Makes figure-captions.
free_erf.m Gaussian function, integrated over bins, to fit to the position histogram.
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free_gauss.mGaussian function, used for display.
calc_powersp.m Calculate the (yet not blocked) power spectrum of time series.
plot_powerspectrum.m Creates log–log plots of blocked power spectra.
plot_powerspec_lin.m Creates log–log plots of power spectra blocked with few data points per b

and blocked on the linear axis.

decorr_xy.m Performs the elimination of cross-talk between channels, i.e., calculatesP
(ex)
xy /

√
P

(ex)
x P

(ex)
y

for transformed variables as function of transformation’s parameters, and chooses these by fit

P
(ex)
xy /

√
P

(ex)
x P

(ex)
y to zero. Then plotsP (ex)

xy /

√
P

(ex)
x P

(ex)
y before and after transformation an

P
(ex)
x andP

(ex)
y after transformation.

plot_corrxy.m Creates plot ofP (ex)
xy /

√
P

(ex)
x P

(ex)
y .

diode_decision.m Sets a system variable depending on whether the position detection system acts as
filter, and whether one or two diode parameters are to be fitted when it does.

alias_decision.m Sets a system variable depending on whether aliasing should be accounted for or not.
g_diode.m Characteristic function of virtual filter of diode. Depends on whether one or two diode paramet

chosen.
hydro_decision.m Sets a system variable depending on whether frequency-dependenthydrodynamic friction is

used, or not.
filter_decision.m Sets a system variable and filter function, depending on number of filters chosen.
read_filter_function.m Reads user-defined filter function. Applies only when filters to be accounted for are

complicated than first-order filters.
fit_powerspectrum.m Performs the fit using:

lorentz_analyt.m Estimates initial values for the parametersfc andD, based on analytic formulas for
Lorentzian function [1].

P_hydro.m The functional form of the power spectrum when frequency-dependent hydrodynami
friction is chosen.

P_theor.m The functional form of the power spectrum. Uses P_hydro.m when relevant.
plot_fit.m Creates log–log plot of power spectrum versus frequency, along with the fit.
plot_data_div_fit.m Creates lin–lin plot of data/fit versus frequency.
plot_P_cos.m Creates lin–lin plot of 1/P (f ) versus cos(πf/fNyq).
hist_decision.m Reads relevant system variable to determine if a histogram ofP (ex)/P (fit) should be

calculated and plotted.
spectrum_histogram.m Calls the routine that plots distribution ofP (ex)/P (fit).
plot_Phist.m Creates histogram of unblockedP (ex)/P (fit), and plots the normalized distribution.
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