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ABSTRACT

The main objective of this work is to investigate a causal inverse dynamics of a flexible single
hub-arm system with a variable tip mass and to control the end point motion. The joint trajectory
was assumed and the end point trajectory was obtained directly through the solution of the
inverse dynamic problem. Although the flexible link is nonminimum phase in nature, the use of
feedforward torque with end point acceleration feedback gives very good performance specially
for variable tip mass. A robust controller was designed for tracking the desired trajectory based
on classical control methodologies.

INTRODUCTION

For the last two decades, the problem of determining the suitable force or driving torque was of
great interest to scientists and engineers. This suitable force or torque must be applied at the
actuator joint, to move the tip mass of a robot arm through a prescribed trajectory as fast as
possible and robust for external disturbances. Currently, the trend is towards using faster flexible
manipulators and larger payloads. The first attempt in solving the dynamics of the flexible robot
was the formulation of the problem relative to a nominal path coordinate system by Song and
Haug (1984). Naganathan and Soni (1987) obtained the solution of the inverse kinematics of the
rigid link motion and then coupled the elastic deformation to it. Cannon and Schmitz (1984)
introduced a modal description of a single link flexible arm and a control strategy based on
optimal control theory. Bayo (1987) introduced a finite element approach for the solution of the
inverse dynamics of a single link and multi link flexible manipulators. Kwon and Book (1994)
presented a technique to overcome the nonminimum phase nature of the flexible link for tracking
control. Ata et al.(1996) applied Liapunov second method to calculate the drive torque of a
flexible hub-arm system through the solution of the inverse dynamics problem. The main objective
of this study is to design a robust controller for a flexible hub-arm system with variable tip mass
using classical control techniques.

PROBLEM FORMULATION

Consider a flexible robot arm of length (L), cross sectional area (4), density (o) and a flexural
stiffness (£7). The link is connected to a rigid hub of radius (») and Inertia (7, ) at one end and a

tip mass (M, ) with moment of inertia (/) is attached at the free end as shown in Figure | . The
beam is modeled using Euler-Bernoulli’s assumption and the motion is assumed to be in the
horizontal plane. The equation of motion can be derived using the extended Hamilton principle
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(Meirovitch, 1967). The detailed discussion of the derivation of the equations of motion of this
model is given in Ata et al. (1996). Let the trajectory of the actuator joint be:

0(t) = 014 *(at - sin(nt)) (1)
Then the trajectory of the tip end can be obtained. Applying the assumed mode method
(Meirovitch, 1967) one can assume the solution in the form:

W(xt)=y(x)q(t) ()
The system equations of motion become:
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Multiply equations (3) by w(x) and integrate over the length of the link , one can get:
d’q d’e
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In which the matrices M, K, and I can be given by

r+L r+L 4 r+L
M=| pdy’(x)ds,K = | Elw(x)dif")dm: | pxy (x)ax and

I.=1,+I,+1,+1,
Equations 3 and 4 which describe the motion of the system can be written in a state space form
as
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The data proposed by Bayo (1987) was used to validate the model suggested in this paper.
Table I Properties of the Flexible Link [ Bayo, 1987]

Properties Values
Length (L) 127m
Cross sectional area (A) 8.066*10° m?
Moment of area (I) 6.775%10"' m*
Young modulus (E) 7.11*10'° N/m?
Mass density (0) 2715 Kg/m’®
Tip mass (M) (0.2-0.3) * Beam Mass Kg

CONTROLLER DESIGN

Controlling a flexible robot link with an uncertain tip mass to track a desired trajectory required
addressing several issues. The controller must be robust , that is, it must be able to track the
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desired trajctory for unknown changes that might happen in the tip mass. The controller must
also take into account the uncertainities in the model that stems from throwing away information
provided by natural frequencies higher than the fundamental natural frequency. The controller
must be stable and track the desired trajectory with great accuracy, therefore a closed loop
configuration must be used. There are many different robust control methodologies used in
controlling a flexible link robot such as Quantitative Feedback Theory and H-Infinity. However
in this paper, only basic classical control methodologies are used to design a controller by using
the MATLAB software to determine uncertainty ranges and obtain Bode and Nichols plots for
the family of plants. The system is nonminimum phase and the bandwidth is limited by the
location of the zero (Doyle et al. 1992). Hence, the response of the system can be improved by
using an inner-outer loop structure (Khorrami and Zheng1992) or inverse dynamics method
(Kwon and Book, 1994). In this paper it is assumed that the tip mass can change from 20% to
30% of the beam mass , but the manner in which it changes is unknown. Since the plant has a
zero in the right half plane, the control methodology can be shown more clearly using a simple
example. Let the tip mass be as shown below in Figure 3. The Bode plot for the family of plant
transfer functions is shown in Figure 4.

A controller was designed using a tip mass nominal value of 24.1% of the beam mass. Since the
plant is changing, the tracking properties can be improved by using a feedback controller.
Although not impossible to handle, the stability problems caused by having two poles at the
origin and a nonminimum phase zero can be eliminated by using acceleration feedback. It can be
determined that close to S degrees of phase margin will guarantee stability for the family of
transfer functions. By loop shaping, the feedback controller designed to improve the tracking
and increase the bandwidth was determined to be a series of cascaded lead controllers shown
below:

(s+05)(s+15)(s+ 3))
(s+1)(s+2)(s+4)

Figures 5 and 6 show the Nichols and Bode plots of the compensated nominal transfer function.
For tracking, a two degree of freedom control methodology must be used. Some of these
methodologies are Classical Quantitative Feedback Theory and inverse dynamic method (Kwon
and Book, 1994). In this paper, the designed feedback controller shown above is used in
conjunction with an inverse dynamics calculated torque feedforward term. The configuration and
the response can be seen in Figures 7&8. It must also be mentioned that the “robot arm” S-
Function the SIMULINK diagram (Fig. 7) in the transfer function relating the input torque to the
tip mass acceleration. By examining Figure 8, it can be concluded that the flexible robot link
tracks the desired trajectory very well.

G(s) =4(

CONCLUSIONS

The number of applications requiring robots in manufacturing is expanding everyday. For many
applications, the rigid link and constant tip mass are not valid assumptions. For designing
controllers, accurate state space models are required. The derivation for modeling a flexible
robot arm with variable tip mass is shown in this paper. The controller must be robust to the
changes in the tip massThe controller was determined to be a closed loop (necessary for
robustness due to changes in the tip mass) with a feedforward term (to reduce the error due to
the nonminimum phase nature of the system). This controller gives tracking without overshoot or
any residual vibrations.
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Fig. 1. Hub-Arm system. Fig. 2. Desired joint trajectory. Fig. 3. Change of tip mass.
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. 5. Compensated Nichols plot.  Fig. 6. Compensated Bode piot.
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Fig. 7. Robust feedforward with feedback block diagram Fig. 8. Robust feedforward with Feedback performance.



