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1. Abstract 
 
A flood of data means that many of the challenges in biology are now challenges in computing. 
Bioinformatics, the application of computational techniques to analyse the information associated 
with biomolecules on a large-scale, has now firmly established itself as a discipline in molecular 
biology, and encompasses a wide range of subject areas from structural biology, genomics to gene 
expression studies. 
 
In this review we provide an introduction and overview of the current state of the field. We discuss 
the main principles that underpin bioinformatics analyses, look at the types of biological information 
and databases that are commonly used, and finally examine some of the studies that are being 
conducted, particularly with reference to transcription regulatory systems. 
 
 
2. Introduction  
 
Biological data are flooding in at an unprecedented rate (1). For example as of August 
2000, the GenBank repository of nucleic acid sequences contained 8,214,000 entries (2) 
and the SWISS-PROT database of protein sequences contained 88,166 (3). On average, 
the amount of information stored in these databases is doubling every 15 months (2). In 
addition, since the publication of the H. influenzae genome (4), complete sequences for 
over 40 organisms have been released, ranging from 450 genes to over 100,000. Add to 
this the data from the myriad of related projects that study gene expression, determine the 
protein structures encoded by the genes, and detail how these products interact with one 
another, and we can begin to imagine the enormous quantity and variety of information 
that is being produced.  
 



2.1 Bioinformatics – a definition1 

 
 
 
 
 
 
 
 
   1 As submitted to the Oxford English Dictionary 
 
As a result of this surge in data, many of the challenges in biology have actually become 
challenges in computing. Such an approach is ideal because of the ease with which 
computers can handle large quantities of data and probe the complex dynamics observed 
in nature. Bioinformatics, the subject of the current review, is often defined as the 
application of computational techniques to understand and organise the information 
associated with biological macromolecules. This shotgun marriage between the two 
subjects is largely attributed to the fact that biology itself is an information technology; 
an organism’s physiology and behaviour are largely dictated by its genes, which at the 
basic level can be viewed as digital repositories of information. At the same time, there 
have been major advances in the technologies that supply the raw data; according to 
Anthony Kerlavage of Celera, an experimental laboratory can easily produce over 100 
gigabytes of data a day (5). This incredible processing power has been matched by 
developments in computer technology; the most important areas of improvements have 
been in the CPU, disk storage and Internet, allowing faster computations, better data 
storage and revolutionalised the methods for accessing and exchanging of data.  
 
2.2 Aims of bioinformatics 
 
The aims of bioinformatics are three-fold. First, at its simplest bioinformatics organises 
data in a way that allows researchers to access existing information and to submit new 
entries as they are produced, eg the Protein Data Bank for 3D macromolecular structures 
(6, 7). While data-curation is an essential task, the information stored in these databases 
is essentially useless until analysed. Thus the purpose of bioinformatics extends far 
beyond mere volume control. The second aim is to develop tools and resources that aid in 
the analysis of data. For example, having sequenced a particular protein, it is of interest to 
compare it with previously characterised sequences. This requires more than just a 
straightforward database search. As such, programs such as FASTA (8) and PSI-BLAST 
(9) must consider what constitutes a biologically significant resemblance. Development 
of such resources requires extensive knowledge of computational theory, as well as a 
thorough understanding of biology. The third aim is to use these tools to analyse the data 
and interpret the results in a biologically meaningful manner. Traditionally, biological 
studies examined individual systems in detail, and frequently compared them with a few 
that are related. In bioinformatics, we can also conduct global analyses of all the available 
data with the aim of uncovering common principles that apply across many systems and 
highlight features that are unique to some. 
 

(Molecular) bio – informatics: bioinformatics is conceptualising biology in terms of 
molecules (in the sense of physical chemistry) and applying “informatics techniques” 
(derived from disciplines such as applied maths, computer science and statistics) to 
understand and organise the information associated with these molecules, on a large 
scale. In short, bioinformatics is a management information system for molecular 
biology and has many practical applications. 



In this review, we provide an introduction to bioinformatics. We focus on the first and 
third aims just described, with particular reference to the keywords underlined in the 
definition: information, informatics, organisation, understanding, large-scale and 
practical applications. Specifically, we discuss the range of data that are currently being 
examined, the databases into which they are organised, the types of analyses that are 
being conducted using transcription regulatory systems as an example, and finally discuss 
some of the major practical applications of bioinformatics. 
 
 
3. “…the INFORMATION associated with these molecules…” 
  
Table 1 lists the types of data that are analysed in bioinformatics and the range of topics 
that we consider to fall within the field. Here we take a broad view and include subjects 
that may not normally be listed. We also give approximate values describing the sizes of 
data being discussed.  
 
We start with an overview of the sources of information: these may be divided into raw 
DNA sequences, protein sequences, macromolecular structures, genome sequences, and 
other whole genome data. Raw DNA sequences are strings of the four base-letters 
comprising genes, each typically 1,000 bases long. The GenBank repository of nucleic 
acid sequences currently holds a total of 9.5 billion bases in 8.2 million entries (all 
database figures as of August 2000). At the next level are protein sequences comprising 
strings of 20 amino acid-letters. At present there are about 300,000 known protein 
sequences, with a typical bacterial protein containing approximately 300 amino acids. 
Macromolecular structural data represents a more complex form of information. There 
are currently 13,000 entries in the Protein Data Bank, PDB, most of which are protein 
structures. A typical PDB file for a medium-sized protein contains the xyz coordinates of 
approximately 2,000 atoms. 
 
Scientific euphoria has recently centred on whole genome sequencing. As with the raw 
DNA sequences, genomes consist of strings of base-letters, ranging from 1.6 million 
bases in Haemophilus influenzae to 3 billion in humans. An important aspect of complete 
genomes is the distinction between coding regions and non-coding regions –‘junk’ 
repetitive sequences making up the bulk of base sequences especially in eukaryotes. We 
can now measure expression levels of almost every gene in a given cell on a whole-
genome level although public availability of such data is still limited. Expression level 
measurements are made under different environmental conditions, different stages of the 
cell cycle and different cell types in multi-cellular organisms. Currently the largest 
dataset for yeast has made approximately 20 time-point measurements for 6,000 genes 
(10). Other genomic-scale data include biochemical information on metabolic pathways, 
regulatory networks, protein-protein interaction data from two-hybrid experiments, and 
systematic knockouts of individual genes to test the viability of an organism. 
 
What is apparent from this list is the diversity in the size and complexity of different 
datasets. There are invariably more sequence-based data than structural data because of 
the relative ease with which they can be produced. This is partly related to the greater 



complexity and information-content of individual structures compared to individual 
sequences. While more biological information can be derived from a single structure than 
a protein sequence, the problem is overcome in the latter by analysing larger quantities of 
data.  
 

Data source Data size Bioinformatics topics 
Raw DNA sequence 
 
 
 
 
Protein sequence 
 
 
 
Macromolecular  
structure 
 
 
 
 
 
 
 
 
 
Genomes 
 
 
 
 
 
 
 
 
Gene expression 
 

8.2 million 
sequences 
(9.5 billion bases) 
 
 
300,000 sequences 
(~300 amino acids 
each) 
 
13,000 structures 
(~1,000 atomic 
coordinates each) 
 
 
 
 
 
 
 
 
40 complete 
genomes 
(1.6 million –  
3 billion bases each) 
 
 
 
 
 
largest: ~20 time 
point measurements 
for ~6,000 genes 
 

Separating coding and non-coding regions 
Identification of introns and exons 
Gene product prediction 
Forensic analysis 
 
Sequence comparison algorithms 
Multiple sequence alignments algorithms 
Identification of conserved sequence motifs 
 
Secondary, tertiary structure prediction 
3D structural alignment algorithms 
Protein geometry measurements 
Surface and volume shape calculations 
Intermolecular interactions 
 
Molecular simulations 
(force-field calculations,  
molecular movements,  
docking predictions) 
 
Characterisation of repeats 
Structural assignments to genes 
Phylogenetic analysis 
Genomic-scale censuses 
(characterisation of protein content, metabolic 
pathways) 
Linkage analysis relating specific genes to 
diseases 
 
Correlating expression patterns 
Mapping expression data to sequence, structural 
and biochemical data 

Other data 
 
Literature 
 
 
Metabolic pathways 

 
 
11 million citations 

 
 
Digital libraries for automated bibliographical 
searches 
Knowledge databases of data from literature 
 
Pathway simulations 
 

 
Table 1. Sources of data used in bioinformatics, the quantity of each type of data that is 
currently (August 2000) available, and bioinformatics subject areas that utilise this data. 

 
 
 



4. “… ORGANISE the information on a LARGE SCALE …” 
 
4.1 Redundancy and multiplicity of data 
 
A concept that underpins most research methods in bioinformatics is that much of this 
data can be grouped together based on biologically meaningful similarities. For example, 
sequence segments are often repeated at different positions of genomic DNA (11). Genes 
can be clustered into those with particular functions (eg enzymatic actions) or according 
to the metabolic pathway to which they belong (12), although here, single genes may 
actually possess several functions (13). Going further, distinct proteins frequently have 
comparable sequences – organisms often have multiple copies of a particular gene 
through duplication and different species have equivalent or similar proteins that were 
inherited when they diverged from each other in evolution. At a structural level, we 
predict there to be a finite number of different tertiary structures – estimates range 
between 1,000 and 10,000 folds (14, 15) – and proteins adopt equivalent structures even 
when they differ greatly in sequence (16). As a result, although the number of structures 
in the PDB has increased exponentially, the rate of discovery of novel folds has actually 
decreased.  
 
There are common terms to describe the relationship between pairs of proteins or the 
genes from which they are derived: analogous proteins have related folds, but unrelated 
sequences, while homologous proteins are both sequentially and structurally similar. The 
two categories can sometimes be difficult to distinguish especially if the relationship 
between the two proteins is remote (17, 18). Among homologues, it is useful to 
distinguish between orthologues, proteins in different species that have evolved from a 
common ancestral gene, and paralogues, proteins that are related by gene duplication 
within a genome (19). Normally, orthologues retain the same function while paralogues 
evolve distinct, but related functions (20). 
 
An important concept that arises from these observations is that of a finite “parts list” for 
different organisms (21, 22): an inventory of proteins contained within an organism, 
arranged according to different properties such as gene sequence, protein fold or function. 
Taking protein folds as an example, we mentioned that with a few exceptions, the tertiary 
structures of proteins adopt one of a limited repertoire of folds. As the number of 
different fold families is considerably smaller than the number of gene families, 
categorising the proteins by fold provides a substantial simplification of the contents of a 
genome. Similar simplifications can be provided by other attributes such as protein 
function. As such, we expect this notion of a finite parts list to become increasingly 
common in the future genomic analyses. 
 
Clearly, an essential aspect of managing this large volume of data lies in developing 
methods for assessing similarities between different biomolecules and identifying those 
that are related. Below, we discuss the major databases that provide access to the primary 
sources of information, and also introduce some secondary databases that systematically 
group the data (Table 2). These classifications ease comparisons between genomes and 



their products, allowing the identification of common themes between those that are 
related and highlighting features that are unique to some.  
 

 
Database URL 
Protein sequence 
(primary) 
SWISS-PROT 
PIR-International 
 
Protein sequence (composite) 
OWL 
NRDB 
 
Protein sequence (secondary) 
PROSITE 
PRINTS 
Pfam 
 
Macromolecular 
structures 
Protein Data Bank (PDB) 
Nucleic Acids Database (NDB) 
HIV Protease Database 
ReLiBase 
PDBsum 
CATH 
SCOP 
FSSP 
 
Nucleotide sequences 
GenBank 
EMBL 
DDBJ 
 
Genome sequences 
Entrez genomes 
GeneCensus 
COGs 
 
Integrated databases 
InterPro 
Sequence retrieval system (SRS) 
Entrez 

 
 
www.expasy.ch/sprot/sprot-top.html 
www.mips.biochem.mpg.de/proj/protseqdb 
 
 
www.bioinf.man.ac.uk/dbbrowser/OWL 
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein 
 
 
www.expasy.ch/prosite 
www.bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html 
www.sanger.ac.uk/Pfam/ 
 
 
 
www.rcsb.org/pdb 
ndbserver.rutgers.edu/ 
www.ncifcrf.gov/CRYS/HIVdb/NEW_DATABASE 
www2.ebi.ac.uk:8081/home.html 
www.biochem.ucl.ac.uk/bsm/pdbsum 
www.biochem.ucl.ac.uk/bsm/cath 
scop.mrc-lmb.cam.ac.uk/scop 
www2.embl-ebi.ac.uk/dali/fssp 
 
 
www.ncbi.nlm.nih.gov/Genbank 
www.ebi.ac.uk/embl 
www.ddbj.nig.ac.jp/ 
 
 
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome 
bioinfo.mbb.yale.edu/genome 
www.ncbi.nlm.nih.gov/COG 
 
 
www.ebi.ac.uk/interpro 
www.expasy.ch/srs5 
www.ncbi.nlm.nih.gov/Entrez 

 
Table 2. List of URLs for the databases that are cited in the review. 

 



4.2 Protein sequence databases 
 
Protein sequence databases are categorised as primary, composite or secondary. Primary 
databases contain over 300,000 protein sequences and function as a repository for the raw 
data. Some more common repositories, such as SWISS-PROT (3) and PIR-International 
(23), annotate the sequences as well as describe the proteins’ functions, its domain 
structure and post-translational modifications. Composite databases such as OWL (24) 
and the NRDB (25) compile and filter sequence data from different primary databases to 
produce combined non-redundant sets that are more complete than the individual 
databases and also include protein sequence data from the translated coding regions in 
DNA sequence databases (see below). Secondary databases contain information derived 
from protein sequences and help the user determine whether a new sequence belongs to a 
known protein family. One of the most popular is PROSITE (26), a database of short 
sequence patterns and profiles that characterise biologically significant sites in proteins. 
PRINTS (27) expands on this concept and provides a compendium of protein fingerprints 
– groups of conserved motifs that characterise a protein family. Motifs are usually 
separated along a protein sequence, but may be contiguous in 3D-space when the protein 
is folded. By using multiple motifs, fingerprints can encode protein folds and 
functionalities more flexibly than PROSITE. Finally, Pfam (28) contains a large 
collection of multiple sequence alignments and profile Hidden Markov Models covering 
many common protein domains. Pfam-A comprises accurate manually compiled 
alignments while Pfam-B is an automated clustering of the whole SWISS-PROT 
database. These different secondary databases have recently been incorporated into a 
single resource named InterPro (29).  
 
4.3 Structural databases 
 
Next we look at databases of macromolecular structures. The Protein Data Bank, PDB (6, 
7), provides a primary archive of all 3D structures for macromolecules such as proteins, 
RNA, DNA and various complexes. Most of the ~13,000 structures (August 2000) are 
solved by x-ray crystallography and NMR, but some theoretical models are also included. 
As the information provided in individual PDB entries can be difficult to extract, 
PDBsum (30) provides a separate Web page for every structure in the PDB displaying 
detailed structural analyses, schematic diagrams and data on interactions between 
different molecules in a given entry. Three major databases classify proteins by structure 
in order to identify structural and evolutionary relationships: CATH (31), SCOP (32), and 
FSSP databases (33). All comprise hierarchical structural taxonomy where groups of 
proteins increase in similarity at lower levels of the classification tree. In addition, 
numerous databases focus on particular types of macromolecules. These include the 
Nucleic Acids Database, NDB (34), for structures related to nucleic acids, the HIV 
protease database (35) for HIV-1, HIV-2 and SIV protease structures and their 
complexes, and ReLiBase (36) for receptor-ligand complexes.  
 
 
 
 



4.4 Nucleotide and Genome sequences 
 
As described previously, the biggest excitement currently lies with the availability of 
complete genome sequences for different organisms. The GenBank (2), EMBL (37) and 
DDBJ (38) databases contain DNA sequences for individual genes that encode protein 
and RNA products. Much like the composite protein sequence database, the Entrez 
nucleotide database (39) compiles sequence data from these primary databases.  
 
As whole-genome sequencing is often conducted through international collaborations, 
individual genomes are published at different sites. The Entrez genome database (40) 
brings together all complete and partial genomes in a single location and currently 
represents over 1,000 organisms (August 2000). In addition to providing the raw 
nucleotide sequence, information is presented at several levels of detail including: a list 
of completed genomes, all chromosomes in an organism, detailed views of single 
chromosomes marking coding and non-coding regions, and single genes. At each level 
there are graphical presentations, pre-computed analyses and links to other sections of 
Entrez. For example, annotations for single genes include the translated protein sequence, 
sequence alignments with similar genes in other genomes and summaries of the 
experimentally characterised or predicted function. GeneCensus (41) also provides an 
entry point for genome analysis with an interactive whole-genome comparison from an 
evolutionary perspective. The database allows building of phylogenetic trees based on 
different criteria such as ribosomal RNA or protein fold occurrence. The site also enables 
multiple genome comparisons, analysis of single genomes and retrieval of information 
for individual genes. The COGs database (20) classifies proteins encoded in 21 
completed genomes on the basis of sequence similarity. Members of the same Cluster of 
Orthologous Group, COG, are expected to have the same 3D domain architecture and 
often, similar functions. The most straightforward application of the database is to predict 
the function of uncharacterised proteins through their homology to characterised proteins, 
and also to identify phylogenetic patterns of protein occurrence – for example, whether a 
given COG is represented across most or all organisms or in just a few closely related 
species.  
 
4.5 Gene expression data 
 
The most recent sources of genomic-scale data have been from expression experiments, 
which quantify the expression levels of individual genes. These experiments measure the 
amount of mRNA or protein products that are produced by the cell. For the former, there 
are three main technologies: the cDNA microarray (42-44), Affymatrix GeneChip (45) 
and SAGE methods (46). The first method measures relative levels of mRNA abundance 
between different samples, while the last two measure absolute levels. Most of the effort 
in gene expression analysis has concentrated on the yeast and human genomes and as yet, 
there is no central repository for this data. For yeast, the Young (10), Church (47) and 
Samson datasets (48) use the GeneChip method, while the Stanford cell cycle (49), 
diauxic shift (50) and deletion mutant datasets (51) use the microarray. Most measure 
mRNA levels throughout the whole yeast cell cycle, although some focus on a particular 
stage in the cycle. For humans, the main application has been to understand expression in 



tumour and cancer cells. The Molecular Portraits of Breast Tumours (52), Lymphoma 
and Leukaemia Molecular Profiling (53) projects provide data from microarray 
experiments on human cancer cells.  
 
The technologies for measuring protein abundance are currently limited to 2D gel 
electrophoresis followed by mass spectrometry (54). As gels can only routinely resolve 
about 1,000 proteins (55), only the most abundant can be visualised. At present, data 
from these experiments are only available from the literature (56, 57). 
 
4.6 Data integration 
 
The most profitable research in bioinformatics often results from integrating multiple 
sources of data (58). For instance, the 3D coordinates of a protein are more useful if 
combined with data about the protein’s function, occurrence in different genomes, and 
interactions with other molecules. In this way, individual pieces of information are put in 
context with respect to other data. Unfortunately, it is not always straightforward to 
access and cross-reference these sources of information because of differences in 
nomenclature and file formats.  
 
At a basic level, this problem is frequently addressed by providing external links to other 
databases, for example in PDBsum, web-pages for individual structures direct the user 
towards corresponding entries in the PDB, NDB, CATH, SCOP and SWISS-PROT. At a 
more advanced level, there have been efforts to integrate access across several data 
sources. One is the Sequence Retrieval System, SRS (59), which allows any flat-file 
databases to be indexed to each other; this allows the user to retrieve, link and access 
entries from nucleic acid, protein sequence, protein motif, protein structure and 
bibliographic databases. Another is the Entrez facility (39), which provides similar 
gateways to DNA and protein sequences, genome mapping data, 3D macromolecular 
structures and the PubMed bibliographic database (60). A search for a particular gene in 
either database will allow smooth transitions to the genome it comes from, the protein 
sequence it encodes, its structure, bibliographic reference and equivalent entries for all 
related genes. 
 
5. “…UNDERSTAND and organise the information…” 
 
Having examined the data, we can discuss the types of analyses that are conducted. As 
shown in Table 1, the broad subject areas in bioinformatics can be separated according to 
the sources of information that are used in the studies. For raw DNA sequences, 
investigations involve separating coding and non-coding regions, and identification of 
introns, exons and promoter regions for annotating genomic DNA (61) (62). For protein 
sequences, analyses include developing algorithms for sequence comparisons (63), 
methods for producing multiple sequence alignments (64), and searching for functional 
domains from conserved sequence motifs in such alignments. Investigations of structural 
data include prediction of secondary and tertiary protein structures, producing methods 
for 3D structural alignments (65, 66), examining protein geometries using distance and 
angular measurements, calculations of surface and volume shapes and analysis of protein 



interactions with other subunits, DNA, RNA and smaller molecules. These studies have 
lead to molecular simulation topics in which structural data are used to calculate the 
energetics involved in stabilising macromolecular structures, simulating movements 
within macromolecules, and computing the energies involved in molecular docking. The 
increasing availability of annotated genomic sequences has resulted in the introduction of 
computational genomics and proteomics – large-scale analyses of complete genomes and 
the proteins that they encode. Research includes characterisation of protein content and 
metabolic pathways between different genomes, identification of interacting proteins, 
assignment and prediction of gene products, and large-scale analyses of gene expression 
levels. Some of these research topics will be demonstrated in our example analysis of 
transcription regulatory systems.  
 
Other subject areas we have included in Table 1 are development of digital libraries for 
automated bibliographical searches, knowledge bases of biological information from the 
literature, DNA analysis methods in forensics, prediction of nucleic acid structures, 
metabolic pathway simulations, and linkage analysis – linking specific genes to different 
disease traits.  
 
In addition to finding relationships between different proteins, much of bioinformatics 
involves the analysis of one type of data to infer and understand the observations for 
another type of data. An example is the use of sequence and structural data to predict the 
secondary and tertiary structures of new protein sequences (67). These methods, 
especially the former, are often based on statistical rules derived from structures, such as 
the propensity for certain amino acid sequences to produce different secondary structural 
elements. Another example is the use of structural data to understand a protein’s function; 
here studies have investigated the relationship different protein folds and their functions 
(68, 69) and analysed similarities between different binding sites in the absence of 
homology (70). Combined with similarity measurements, these studies provide us with an 
understanding of how much biological information can be accurately transferred between 
homologous proteins (71).   
 
5.1 The bioinformatics spectrum 
 
Figure 1 summarises the main points we raised in our discussions of organising and 
understanding biological data – the development of bioinformatics techniques has 
allowed an expansion of biological analysis in two dimension, depth and breadth. The 
first is represented by the vertical axis in the figure and outlines a possible approach to 
the rational drug design process. The aim is to take a single protein and follow through an 
analysis that maximises our understanding of the protein it encodes. Starting with a gene 
sequence, we can determine the protein sequence with strong certainty. From there, 
prediction algorithms can be used to calculate the structure adopted by the protein. 
Geometry calculations can define the shape of the protein’s surface and molecular 
simulations can determine the force fields surrounding the molecule. Finally, using 
docking algorithms, one could identify or design ligands that may bind the protein, 
paving the way for designing a drug that specifically alters the protein’s function. In 
practise, the intermediate steps are still difficult to achieve accurately, and they are best 



combined with experimental methods to obtain some of the data, for example 
characterising the structure of the protein of interest. 

 
 
Figure 1. Paradigm shifts during the past couple of decades have taken much of biology away from the 
laboratory bench and have allowed the integration of other scientific disciplines, specifically computing. 
The result is an expansion of biological research in breadth and depth. The vertical axis demonstrates how 
bioinformatics can aid rational drug design with minimal work in the wet lab. Starting with a single gene 
sequence, we can determine with strong certainty, the protein sequence. From there, we can determine the 
structure using structure prediction techniques. With geometry calculations, we can further resolve the 
protein’s surface and through molecular simulation determine the force fields surrounding the molecule. 
Finally docking algorithms can provide predictions of the ligands that will bind on the protein surface, thus 
paving the way for the design of a drug specific to that molecule.  
 
The horizontal axis shows how the influx of biological data and advances in computer technology have 
broadened the scope of biology. Initially with a pair of proteins, we can make comparisons between the 
between sequences and structures of evolutionary related proteins. With more data, algorithms for multiple 
alignments of several proteins become necessary. Using multiple sequences, we can also create 
phylogenetic trees to trace the evolutionary development of the proteins in question. Finally, with the 
deluge of data we currently face, we need to construct large databases to store, view and deconstruct the 
information. Alignments now become more complex, requiring sophisticated scoring schemes and there is 
enough data to compile a genome census – a genomic equivalent of a population census – providing 
comprehensive statistical accounting of protein features in genomes. 



The aims of the second dimension, the breadth in biological analysis, is to compare a 
gene with others. Initially, simple algorithms can be used to compare the sequences and 
structures of a pair of related proteins. With a larger number of proteins, improved 
algorithms can be used to produce multiple alignments, and extract sequence patterns or 
structural templates that define a family of proteins. Using this data, it is also possible to 
construct phylogenetic trees to trace the evolutionary path of proteins. Finally, with even 
more data, the information must be stored in large-scale databases. Comparisons become 
more complex, requiring multiple scoring schemes, and we are able to conduct genomic 
scale censuses that provide comprehensive statistical accounts of protein features, such as 
the abundance of particular structures or functions in different genomes. It also allows us 
to build phylogenetic trees that trace the evolution of whole organisms. 
 
6. “… applying INFORMATICS TECHNIQUES…” 
 
The distinct subject areas we mention require different types of informatics techniques. 
Briefly, for data organisation, the first biological databases were simple flat files. 
However with the increasing amount of information, relational database methods with 
Web-page interfaces have become increasingly popular. In sequence analysis, techniques 
include string comparison methods such as text search and 1D alignment algorithms. 
Motif and pattern identification for multiple sequences depend on machine learning, 
clustering and data-mining techniques. 3D structural analysis techniques include 
Euclidean geometry calculations combined with basic application of physical chemistry, 
graphical representations of surfaces and volumes, and structural comparison and 3D 
matching methods. For molecular simulations, Newtonian mechanics, quantum 
mechanics, molecular mechanics and electrostatic calculations are applied. In many of 
these areas, the computational methods must be combined with good statistical analyses 
in order to provide an objective measure for the significance of the results.  
 
7. Transcription regulation – a case study in bioinformatics 
 
DNA-binding proteins have a central role in all aspects of genetic activity within an 
organism, participating in processes such as transcription, packaging, rearrangement, 
replication and repair. In this section, we focus on the studies that have contributed to our 
understanding of transcription regulation in different organisms. Through this example, 
we demonstrate how bioinformatics has been used to increase our knowledge of 
biological systems and also illustrate the practical applications of the different subject 
areas that were briefly outlined earlier. We start by considering structural analyses of how 
DNA-binding proteins recognise particular base sequences. Later, we review several 
genomic studies that have characterised the nature of transcription factors in different 
organisms, and the methods that have been used to identify regulatory binding sites in the 
upstream regions. Finally, we provide an overview of gene expression analyses that have 
been recently conducted and suggest future uses of transcription regulatory analyses to 
rationalise the observations made in gene expression experiments. All the results that we 
describe have been found through computational studies. 
 



7.1 Structural studies 
 
As of August 2000, there were 379 structures of protein-DNA complexes in the PDB. 
Analyses of these structures have provided valuable insight into the stereochemical 
principles of binding, including how particular base sequences are recognized and how 
the DNA structure is quite often modified on binding.  
 
A structural taxonomy of DNA-binding proteins, similar to that presented in SCOP and 
CATH, was first proposed by Harrison (72) and periodically updated to accommodate 
new structures as they are solved (73). The classification consists of a two-tier system: 
the first level collects proteins into eight groups that share gross structural features for 
DNA-binding, and the second comprises 54 families of proteins that are structurally 
homologous to each other. Assembly of such a system simplifies the comparison of 
different binding methods; it highlights the diversity of protein-DNA complex geometries 
found in nature, but also underlines the importance of interactions between α-helices and 
the DNA major groove, the main mode of binding in over half the protein families. While 
the number of structures represented in the PDB does not necessarily reflect the relative 
importance of the different proteins in the cell, it is clear that helix-turn-helix, zinc-
coordinating and leucine zipper motifs are used repeatedly. This provides compact 
frameworks that present the α-helix on the surfaces of structurally diverse proteins. At a 
gross level, it is possible to highlight the differences between transcription factor domains 
that “just” bind DNA and those involved in catalysis (74). Although there are exceptions, 
the former typically approach the DNA from a single face and slot into the grooves to 
interact with base edges. The latter commonly envelope the substrate, using complex 
networks of secondary structures and loops. 
 
Focusing on proteins with α-helices, the structures show many variations, both in amino 
acid sequences and detailed geometry. They have clearly evolved independently in 
accordance with the requirements of the context in which they are found. While 
achieving a close fit between the α-helix and major groove, there is enough flexibility to 
allow both the protein and DNA to adopt distinct conformations. However, several 
studies that analysed the binding geometries of α-helices demonstrated that most adopt 
fairly uniform conformations regardless of protein family. They are commonly inserted in 
the major groove sideways, with their lengthwise axis roughly parallel to the slope 
outlined by the DNA backbone. Most start with the N-terminus in the groove and extend 
out, completing two to three turns within contacting distance of the nucleic acid (75, 76).  
 
Given the similar binding orientations, it is surprising to find that the interactions 
between each amino acid position along the α-helices and nucleotides on the DNA vary 
considerably between different protein families. However, by classifying the amino acids 
according to the sizes of their side chains, we are able to rationalise the different 
interactions patterns. The rules of interactions are based on the simple premise that for a 
given residue position on α-helices in similar conformations, small amino acids interact 
with nucleotides that are close in distance and large amino acids with those that are 
further (76, 77). Equivalent studies for binding by other structural motifs, like β-hairpins, 
have also been conducted (78). When considering these interactions, it is important to 



remember that different regions of the protein surface also provide interfaces with the 
DNA. 
 
This brings us to look at the atomic level interactions between individual amino acid-base 
pairs. Such analyses are based on the premise that a significant proportion of specific 
DNA-binding could be rationalised by a universal code of recognition between amino 
acids and bases, ie whether certain protein residues preferably interact with particular 
nucleotides regardless of the type of protein-DNA complex (79).  Studies have 
considered hydrogen bonds, van der Waals contacts and water-mediated bonds (80-82). 
Results showed that about 2/3 of all interactions are with the DNA backbone and that 
their main role is one of sequence-independent stabilisation. In contrast, interactions with 
bases display some strong preferences, including the interactions of arginine or lysine 
with guanine, asparagine or glutamine with adenine and threonine with thymine. Such 
preferences were explained through examination of the stereochemistry of the amino acid 
side chains and base edges. Also highlighted were more complex types of interactions 
where single amino acids contact more than one base-step simultaneously, thus 
recognising a short DNA sequence. These results suggested that universal specificity, one 
that is observed across all protein-DNA complexes, indeed exists. However, many 
interactions that are normally considered to be non-specific, such as those with the DNA 
backbone, can also provide specificity depending on the context in which they are made.  
 
Armed with an understanding of protein structure, DNA-binding motifs and side chain 
stereochemistry, a major application has been the prediction of binding either by proteins 
known to contain a particular motif, or those with structures solved in the uncomplexed 
form. Most common are predictions for α-helix-major groove interactions – given the 
amino acid sequence, what DNA sequence would it recognise (77, 83). In a different 
approach, molecular simulation techniques have been used to dock whole proteins and 
DNAs on the basis of force-field calculations around the two molecules (84, 85). 
 
The reason that both methods have only been met with limited success is because even 
for apparently simple cases like α-helix-binding, there are many other factors that must 
be considered. Comparisons between bound and unbound nucleic acid structures show 
that DNA-bending is a common feature of complexes formed with transcription factors 
(74, 86). This and other factors such as electrostatic and cation-mediated interactions 
assist indirect recognition of the nucleotide sequence, although they are not well 
understood yet. Therefore, it is now clear that detailed rules for specific DNA-binding 
will be family specific, but with underlying trends such as the arginine-guanine 
interactions.  
 
7.2 Genomic studies 
 
Due to the wealth of biochemical data that are available, genomic studies in 
bioinformatics have concentrated on model organisms, and the analysis of regulatory 
systems has been no exception. Identification of transcription factors in genomes 
invariably depends on similarity search strategies, which assume a functional and 
evolutionary relationship between homologous proteins. In E. coli, studies have so far 



estimated a total of 300 to 500 transcription regulators (87) and PEDANT (88), a 
database of automatically assigned gene functions, shows that typically 2-3% of 
prokaryotic and 6-7% of eukaryotic genomes comprise DNA-binding proteins. As 
assignments were only complete for 40-60% of genomes as of August 2000, these figures 
most likely underestimate the actual number.  Nonetheless, they already represent a large 
quantity of proteins and it is clear that there are more transcription regulators in 
eukaryotes than other species. This is unsurprising, considering the organisms have 
developed a relatively sophisticated transcription mechanism. 
 
From the conclusions of the structural studies, the best strategy for characterising DNA-
binding of the putative transcription factors in each genome is to group them by 
homology and analyse the individual families. Such classifications are provided in the 
secondary sequence databases described earlier and also those that specialise in 
regulatory proteins such as RegulonDB (89) and TRANSFAC (90). Of even greater use is 
the provision of structural assignments to the proteins; given a transcription factor, it is 
helpful to know the structural motif that it uses for binding, therefore providing us with a 
better understanding of how it recognises the target sequence. Structural genomics 
through bioinformatics assigns structures to the protein products of genomes by 
demonstrating similarity to proteins of known structure (91). These studies have shown 
that prokaryotic transcription factors most frequently contain helix-turn-helix motifs (87, 
92) and eukaryotic factors contain homeodomain type helix-turn-helix, zinc finger or 
leucine zipper motifs. From the protein classifications in each genome, it is clear that 
different types of regulatory proteins differ in abundance and families significantly differ 
in size. A study by Huynen and van Nimwegen (93) has shown that members of a single 
family have similar functions, but as the requirements of this function vary over time, so 
does the presence of each gene family in the genome.  
 
Most recently, using a combination of sequence and structural data, we examined the 
conservation of amino acid sequences between related DNA-binding proteins, and the 
effect that mutations have on DNA sequence recognition. The structural families 
described above were expanded to include proteins that are related by sequence 
similarity, but whose structures remain unsolved. Again, members of the same family are 
homologous, and probably derive from a common ancestor.  
 
Amino acid conservations were calculated for the multiple sequence alignments of each 
family (94). Generally, alignment positions that interact with the DNA are better 
conserved than the rest of the protein surface, although the detailed patterns of 
conservation are quite complex. Residues that contact the DNA backbone are highly 
conserved in all protein families, providing a set of stabilising interactions that are 
common to all homologous proteins. The conservation of alignment positions that contact 
bases, and recognise the DNA sequence, are more complex and could be rationalised by 
defining a 3-class model for DNA-binding. First, protein families that bind non-
specifically usually contain several conserved base-contacting residues; without 
exception, interactions are made in the minor groove where there is little discrimination 
between base types. The contacts are commonly used to stabilise deformations in the 
nucleic acid structure, particularly in widening the DNA minor groove. The second class 



comprise families whose members all target the same nucleotide sequence; here, base-
contacting positions are absolutely or highly conserved allowing related proteins to target 
the same sequence.  
 
The third, and most interesting, class comprises families in which binding is also specific 
but different members bind distinct base sequences. Here protein residues undergo 
frequent mutations, and family members can be divided into subfamilies according to the 
amino acid sequences at base-contacting positions; those in the same subfamily are 
predicted to bind the same DNA sequence and those of different subfamilies to bind 
distinct sequences. On the whole, the subfamilies corresponded well with the proteins’ 
functions and members of the same subfamilies were found to regulate similar 
transcription pathways. The combined analysis of sequence and structural data described 
by this study provided an insight into how homologous DNA-binding scaffolds achieve 
different specificities by altering their amino acid sequences. In doing so, proteins 
evolved distinct functions, therefore allowing structurally related transcription factors to 
regulate expression of different genes. Therefore, the relative abundance of transcription 
regulatory families in a genome depends, not only on the importance of a particular 
protein function, but also in the adaptability of the DNA-binding motifs to recognise 
distinct nucleotide sequences. This, in turn, appears to be best accommodated by simple 
binding motifs, such as the zinc fingers. 
 
Given the knowledge of the transcription regulators that are contained in each organism, 
and an understanding of how they recognise DNA sequences, it is of interest to search for 
their potential binding sites within genome sequences (95). For prokaryotes, most 
analyses have involved compiling data on experimentally known binding sites for 
particular proteins and building a consensus sequence that incorporates any variations in 
nucleotides. Additional sites are found by conducting word-matching searches over the 
entire genome and scoring candidate sites by similarity (96-99). Unsurprisingly, most of 
the predicted sites are found in non-coding regions of the DNA (96) and the results of the 
studies are often presented in databases such as RegulonDB (89). The consensus search 
approach is often complemented by comparative genomic studies searching upstream 
regions of orthologous genes in closely related organisms. Through such an approach, it 
was found that at least 27% of known E. coli DNA-regulatory motifs are conserved in 
one or more distantly related bacteria (100). 
 
The detection of regulatory sites in eukaryotes poses a more difficult problem because 
consensus sequences tend to be much shorter, variable, and dispersed over very large 
distances. However, initial studies in S. cerevisiae provided an interesting observation for 
the GATA protein in nitrogen metabolism regulation. While the 5 base-pair GATA 
consensus sequence is found almost everywhere in the genome, a single isolated binding 
site is insufficient to exert the regulatory function (101). Therefore specificity of GATA 
activity comes from the repetition of the consensus sequence within the upstream regions 
of controlled genes in multiple copies. An initial study has used this observation to 
predict new regulatory sites by searching for over-represented oligonucleotides in non-
coding regions of yeast and worm genomes (102, 103). 
 



Having detected the regulatory binding sites, there is the problem of defining the genes 
that are actually regulated, commonly termed regulons. Generally, binding sites are 
assumed to be located directly upstream of the regulons; however there are different 
problems associated with this assumption depending on the organism. For prokaryotes, it 
is complicated by the presence of operons; it is difficult to locate the regulated gene 
within an operon since it can lie several genes downstream of the regulatory sequence. It 
is often difficult to predict the organisation of operons (104), especially to define the gene 
that is found at the head, and there is often a lack of long-range conservation in gene 
order between related organisms (105). The problem in eukaryotes is even more severe; 
regulatory sites often act in both directions, binding sites are usually distant from 
regulons because of large intergenic regions, and transcription regulation is usually a 
result of combined action by multiple transcription factors in a combinatorial manner. 
 
Despite these problems, these studies have succeeded in confirming the transcription 
regulatory pathways of well-characterised systems such as the heat shock response 
system (99). In addition, it is feasible to experimentally verify any predictions, most 
notably using gene expression data. 
 
7.3 Gene expression studies 
 
Many expression studies have so far focused on devising methods to cluster genes by 
similarities in expression profiles. This is in order to determine the proteins that are 
expressed together under different cellular conditions. Briefly, the most common methods 
are hierarchical clustering, self-organising maps, and K-means clustering. Hierarchical 
methods originally derived from algorithms to construct phylogenetic trees, and group 
genes in a “bottom-up” fashion; genes with the most similar expression profiles are 
clustered first, and those with more diverse profiles are included iteratively (106-108). In 
contrast, the self-organising map (109, 110) and K-means methods (111) employ a “top-
down” approach in which the user pre-defines the number of clusters for the dataset. The 
clusters are initially assigned randomly, and the genes are regrouped iteratively until they 
are optimally clustered.  
 
Given these methods, it is of interest to relate the expression data to other attributes such 
as structure, function and subcellular localisation of each gene product. Mapping these 
properties provide an insight into the characteristics of proteins that are expressed 
together, and also suggest some interesting conclusions about the overall biochemistry of 
the cell. In yeast, shorter proteins tend to be more highly expressed than longer proteins, 
probably because of the relative ease with which they are produced (112). Looking at the 
amino acid content, highly expressed genes are generally enriched in alanine and glycine, 
and depleted in asparagine; these are thought to reflect the requirements of amino acid 
usage in the organism, where synthesis of alanine and glycine are energetically less 
expensive than asparagine. Turning to protein structure, expression levels of the TIM 
barrel and NTP hydrolase folds are highest, while those for the leucine zipper, zinc finger 
and transmembrane helix-containing folds are lowest. This relates to the functions 
associated with these folds; the former are commonly involved in metabolic pathways 
and the latter in signalling or transport processes (113). This is also reflected in the 



relationship with subcellular localisations of proteins, where expression of cytoplasmic 
proteins is high, but nuclear and membrane proteins tend to be low (114, 115). 
 
More complex relationships have also been assessed. Conventional wisdom is that gene 
products that interact with each other are more likely to have similar expression profiles 
than if they do not (116, 117). However, a recent study showed that this relationship is 
not so simple (118). While expression profiles are similar for gene products that are 
permanently associated, for example in the large ribosomal subunit, profiles differ 
significantly for products that are only associated transiently, including those belonging 
to the same metabolic pathway.  
 
As described below, one of the main driving forces behind expression analysis has been 
to analyse cancerous cell lines (119). In general, it has been shown that different cell lines 
(eg epithelial and ovarian cells) can be distinguished on the basis of their expression 
profiles, and that these profiles are maintained when cells are transferred from an in vivo 
to an in vitro environment (120). The basis for their physiological differences were 
apparent in the expression of specific genes; for example, expression levels of gene 
products necessary for progression through the cell cycle, especially ribosomal genes, 
correlated well with variations in cell proliferation rate. Comparative analysis can be 
extended to tumour cells, in which the underlying causes of cancer can be uncovered by 
pinpointing areas of biological variations compared to normal cells. For example in 
breast cancer, genes related to cell proliferation and the IFN-regulated signal transduction 
pathway were found to be upregulated (52, 121). One of the difficulties in cancer 
treatment has been to target specific therapies to pathogenetically distinct tumour types, 
in order to maximise efficacy and minimise toxicity. Therefore, improvements in cancer 
classifications have been central to advances in cancer treatment. Although the distinction 
between different forms of cancer – for example subclasses of acute leukaemia – has 
been well established, it is still not possible to establish a clinical diagnosis on the basis 
of a single test.  In a recent study, acute myeloid leukaemia and acute lymphoblastic 
leukaemia were successfully distinguished based on the expression profiles of these cells 
(53). As the approach does not require prior biological knowledge of the diseases, it may 
provide a generic strategy for classifying all types of cancer.  
 
Clearly, an essential aspect of understanding expression data lies in understanding the 
basis of transcription regulation. However, analysis in this area is still limited to 
preliminary analyses of expression levels in yeast mutants lacking key components of the 
transcription initiation complex (10, 122). 
 



8. “… many PRACTICAL APPLICATIONS…” 
 
Here, we describe some of the major uses of bioinformatics.  
 
8.1 Finding Homologues 
 
As described earlier, one of the driving forces behind bioinformatics is the search for 
similarities between different biomolecules. Apart from enabling systematic organisation 
of data, identification of protein homologues has some direct practical uses. The most 
obvious is transferring information between related proteins. For example, given a poorly 
characterised protein, it is possible to search for homologues that are better understood 
and with caution, apply some of the knowledge of the latter to the former. Specifically 
with structural data, theoretical models of proteins are usually based on experimentally 
solved structures of close homologues (123). Similar techniques are used in fold 
recognition in which tertiary structure predictions depend on finding structures of remote 
homologues and checking whether the prediction is energetically viable (124). Where 
biochemical or structural data are lacking, studies could be made in low-level organisms 
like yeast and the results applied to homologues in higher-level organisms such as 
humans, where experiments are more demanding.  
 
An equivalent approach is also employed in genomics. Homologue-finding is extensively 
used to confirm coding regions in newly sequenced genomes and functional data is 
frequently transferred to annotate individual genes. On a larger scale, it also simplifies 
the problem of understanding complex genomes by analysing simple organisms first and 
then applying the same principles to more complicated ones – this is one reason why 
early structural genomics projects focused on Mycoplasma genitalium (91). 
 
Ironically, the same idea can be applied in reverse. Potential drug targets are quickly 
discovered by checking whether homologues of essential microbial proteins are missing 
in humans. On a smaller scale, structural differences between similar proteins may be 
harnessed to design drug molecules that specifically bind to one structure but not another. 
 



8.2 Rational Drug Design 
 
One of the earliest medical applications of bioinformatics has been in aiding rational drug 
design. Figure 2 outlines the commonly cited approach, taking the MLH1 gene product as 
an example drug target. MLH1 is a human gene encoding a mismatch repair protein 
(mmr) situated on the short arm of chromosome 3 (125). Through linkage analysis and its 
similarity to mmr genes in mice, the gene has been implicated in nonpolyposis colorectal 
cancer (126). Given the nucleotide sequence, the probable amino acid sequence of the 
encoded protein can be determined using translation software. Sequence search 
techniques can then be used to find homologues in model organisms, and based on 
sequence similarity, it is possible to model the structure of the human protein on 
experimentally characterised structures. Finally, docking algorithms could design 
molecules that could bind the model structure, leading the way for biochemical assays to 
test their biological activity on the actual protein. 
 

Figure 2. Above is a schematic outlining how scientists can use bioinformatics to aid rational drug 
discovery. MLH1 is a human gene encoding a mismatch repair protein (mmr) situated on the short arm of 
chromosome 3. Through linkage analysis and its similarity to mmr genes in mice, the gene has been 
implicated in nonpolyposis colorectal cancer. Given the nucleotide sequence, the probable amino acid 
sequence of the encoded protein can be determined using translation software. Sequence search techniques 
can be used to find homologues in model organisms, and based on sequence similarity, it is possible to 
model the structure of the human protein on experimentally characterised structures. Finally, docking 
algorithms could design molecules that could bind the model structure, leading the way for biochemical 
assays to test their biological activity on the actual protein. 



8.3 Large-scale censuses 
 
Although databases can efficiently store all the information related to genomes, structures 
and expression datasets, it is useful to condense all this information into understandable 
trends and facts that users can readily understand. Broad generalisations help identify 
interesting subject areas for further detailed analysis, and place new observations in a 
proper context. This enables one to see whether they are unusual in any way.  
 
Through these large-scale censuses, one can address a number of evolutionary, 
biochemical and biophysical questions. For example, are specific protein folds associated 
with certain phylogenetic groups? How common are different folds within particular 
organisms? And to what degree are folds shared between related organisms? Does this 
extent of sharing parallel measures of relatedness derived from traditional evolutionary 
trees? Initial studies show that the frequency of folds differs greatly between organisms 
and that the sharing of folds between organisms does in fact follow traditional 
phylogenetic classifications (21, 41). We can also integrate data on protein functions; 
given that the particular protein folds are often related to specific biochemical functions 
(68, 69), these findings highlight the diversity of metabolic pathways in different 
organisms (20, 105).  
 
As we discussed earlier, one of the most exciting new sources of genomic information is 
the expression data. Combining expression information with structural and functional 
classifications of proteins we can ask whether the high occurrence of a protein fold in a 
genome is indicative of high expression levels (112). Further genomic scale data that we 
can consider in large-scale surveys include the subcellular localisations of proteins and 
their interactions with each other (127-129). In conjunction with structural data, we can 
then begin to compile a map of all protein-protein interactions in an organism. 
 
8.4 Further applications in medical sciences 
 
Most recent applications in the medical sciences have centred on gene expression 
analysis (130). This usually involves compiling expression data for cells affected by 
different diseases (131), eg cancer (53, 132, 133) and ateriosclerosis (134), and 
comparing the measurements against normal expression levels. Identification of genes 
that are expressed differently in affected cells provides a basis for explaining the causes 
of illnesses and highlights potential drug targets. Using the process described in Figure 2, 
one would design compounds that bind the expressed protein, or perhaps more 
importantly, the transcription regulator has caused the change in expression levels. Given 
a lead compound, microarray experiments can then be used to evaluate responses to 
pharmacological intervention, (135, 136) and also provide early tests to detect or predict 
the toxicity of trial drugs.  
 
Further advances in bioinformatics combined with experimental genomics for individuals 
are predicted to revolutionalise the future of healthcare. A typical scenario for a patient 
may start with post-natal genotyping to assess susceptibility or immunity from specific 
diseases and pathogens. With this information, a unique combination of vaccines could 



be prescribed, minimising the healthcare costs of unnecessary treatments and anticipating 
the onslaught of diseases later in life. Regular lifetime screenings could lead to guidance 
for nutrition intake and early detections of any illnesses (137). In addition, drug-based 
treatments could be tailored specifically to the patient and disease, thus providing the 
most effective course of medication with minimal side-effects (138). Given the present 
rate of development, such a scenario in healthcare appears to be possible in the not too 
distant future.  
 
9. Conclusions 
 
With the current deluge of data, computational methods have become indispensable to 
biological investigations. Originally developed for the analysis of biological sequences, 
bioinformatics now encompasses a wide range of subject areas including structural 
biology, genomics and gene expression studies. In this review, we provided an 
introduction and overview of the current state of field. In particular, we discussed the 
types of biological information and databases that are commonly used, examined some of 
the studies that are being conducted – with reference to transcription regulatory systems – 
and finally looked at several practical applications of the field.  
 
Two principal approaches underpin all studies in bioinformatics. First is that of 
comparing and grouping the data according to biologically meaningful similarities and 
second, that of analysing one type of data to infer and understand the observations for 
another type of data. These approaches are reflected in the main aims of the field, which 
are to understand and organise the information associated with biological molecules on a 
large scale. As a result, bioinformatics has not only provided greater depth to biological 
investigations, but added the dimension of breadth as well. In this way, we are able to 
examine individual systems in detail and also compare them with those that are related in 
order to uncover common principles that apply across many systems and highlight 
unusual features that are unique to some.  
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