Chap. 7¡B¸ÑLPªº¨ä¥Lºtºâªk

7.1 Dual Simplex Method

 

¬OMirror Image of Simplex Method.

See Table 6.10, 6.11 »P Fig.6.1 (p.210, 211)

Simplex Method ¥ÑSuboptimal basic solution¶}©l¨D¸Ñ¡A´Âoptimum «e¶i¡A

Dual Simplex Method ¥Ñ Superoptimal basic solution ¶}©l¨D¸Ñ¡A´Âoptimum «e¶i¡C

 

¸ÑÃD¨BÆJ¡G

For Maximization Problem

¦bEq.0 ªº©Ò¦³«Y¼Æ§¡¬°«D­t¡A¦p¦¹the basic solution ¤~¬O Superoptimal.

The basic solution ·|¬OInfeasible ¥u¦³·í¦³¨ÇÅܼƬ°­t¼Æ¡CDual Simplex ªk·|³v¨B­°§C¥Ø¼Ð¨ç¼Æ­È¡A¦P®É«O«ù¦bEq.0 ªº©Ò¦³«Y¼Æ§¡¬°«D­t¡A¨Ã³v¨B¥h°£¨ä­È¬°­t¼ÆªºÅܼơAª½¨ì©Ò¦³ªºÅܼƳ̫᧡¬°«D­t¡C³Ì«áªºbasic solution §Y¬°³ÌÀu¸Ñ¡C

 

Step 1. Initialization

Step 2. Feasibility test

Step 3. Iteration

 

Step 3.1

¨M©w¥X°òÅÜ¼Æ (leaving basic variable): ¥Ñ°òÅܼƤ¤¿ï¨ú¦³³Ì¤jµ´¹ï­Èªº­t¼Æ¬°¥X°òÅܼơC

 

Step 3.2

¨M©w¤J°òÅÜ¼Æ (entering basic variable): ¥Ñ«D°òÅܼƤ¤¿ï¨ú¨º­Ó¦beq. 0 ¤¤¥i³z¹L»Pstep 3.1¤¤ªº¥X°òÅܼƦC°µ°ª´µ®ø¥hºtºâ(Gaussian elimination)«á³Ì§ÖÅܬ°0ªÌ¬°¤J°òÅܼơC

 

Step 3.3

¨D¥X·sªºbasic solution: ¥Ø¼Ð¦bSet the nonbasic variables equal to 0¤§«á¡A¨C­Óbasic variable »PZ­È§Yµ¥©ó·sªºrhsªº­È¡C¦^Step 2 ¶i¦æ Feasibility Test.

 

½d¨Ò¡G

Maximize              Z = -4y1 ¡V 12 y2 ¡V18 y3,

s.t.                                 y1 +      3 y3       >= 3

                                              2 y2 + 2 y3       >= 5

                                              y1, y2, y3 >=0

­×§ï¬°

Minimize               Z = 4y1 + 12 y2 +18 y3,

s.t.                                 -y1 -      3 y3       <= -3

                                              -2 y2 - 2 y3       <= -5                               

                                              y1, y2, y3 >=0

 

¦¹ÃD¬°Wyndor Glass Co. (p.82) °ÝÃD¤§Dual Prblem

 

Table 7.1 Dual Simplex Method applied to Wyndor Glass Co. Dual Problem

Iteration

Basic var.

 

Eq.

Coefficient of

 

r.h.s

Z

y1

y2

y3

y4

y5

 

Z

(0)

1

4

12

18

0

0

0

0

y4

(1)

0

-1

0

-3

1

0

-3

 

y5

(2)

0

0

-2

-2

0

1

-5

Iteration

Basic var.

 

Eq.

Coefficient of

 

r.h.s

Z

y1

y2

y3

y4

y5

 

Z

(0)

1

4

0

6

0

6

-30

1

y4

(1)

0

-1

0

-3

1

0

-3

 

y2

(2)

0

0

1

1

0

-1/2

5/2

Iteration

Basic var.

 

Eq.

Coefficient of

 

r.h.s

Z

y1

y2

y3

y4

y5

 

Z

(0)

1

2

0

0

2

6

-36

2

y3

(1)

0

1/3

0

1

-1/3

0

1

 

y2

(2)

0

-1/3

1

0

1/3

-1/2

3/2

 

The corresponding basic solution is (y1, y2, y3, y4, y5) = (0, 3/2, 1, 0, 0), Z = -36

The optimal solution for the dual of this problem is

(x1*, x2*, x3*, x4*, x5*)=(2,6,2,0,0)

 

¤ñ¸û Table 7.1 »P Table 4.8. (p.99)

 

7.2 Parametric LP

Systematic changes in the Cj parameters

 is replaced by

¥Nªírelative rates at which the coefficients are to be changed.

The values assigned to the  may represent ¡K¡K¡K(p.267).

For any given value of, ¡K¡K. (p.267)

 

always has this piecewise linear and convex form (Fig. 7.1 of p.267)

 

Summary

1.          Solve the problem with =0 by the simplex method.

2.          Use the sensitivity analysis procedure (case 2a and 3, sec. 6.7) to introduce the  changes into Eq.(0).

3.          Increase  until one of the nonbasic variables has its coefficient in Eq.(0) go negative (or until  has been increased as far as desired).

4.          Use this variable as the entering basic variable for an iteration of the simplex method to find the new optimal solution. Return to step 3.

 

Table 7.2 of p.269

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

x1

x2

x3

x4

x5

 

 

(0)

1

0

0

0

36-2

x4=0

x5=0

x3

(1)

0

0

0

1

1/3

-1/3

2

x3=2

x2

(2)

0

0

1

0

1/2

0

6

x2=6

x1

(3)

0

1

0

0

-1/3

1/3

2

x1=2

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

x1

x2

x3

x4

x5

 

 

(0)

1

0

0

0

27+5

x3=0

x5=0

x4

(1)

0

0

0

3

1

-1

6

x4=6

x2

(2)

0

0

1

-3/2

0

1/2

3

x2=3

x1

(3)

0

1

0

1

0

0

4

x1=4

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

x1

x2

x3

x4

x5

 

 

(0)

1

0

0

0

12+8

x2=0

x3=0

x4

(1)

0

0

2

0

1

0

12

x4=12

x5

(2)

0

0

2

-3

0

1

6

x5=6

x1

(3)

0

1

0

1

0

0

4

x1=4

 

Systematic changes in the bj parameters

 Maximize

s.t.  for i = 1,2,¡K., m

and  for j = 1,2,¡K, n

The goal is to identify he optimal solution as a function of .

 

Summary

 

1.          Solve the problem with =0 by the simplex method.

2.          Use the sensitivity analysis procedure (case 1, sec. 6.7) to introduce the  changes to the r.h.s. column.

3.          Increase  until one of the basic variables has its value in the r.h.s. column go negative (or until  has been increased as far as desired).

4.          Use this variable as the leaving basic variable for an iteration of the dual simplex method to find the new optimal solution. Return to step 3.

 

Table 7.3 of p.271

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

y1

y2

y3

y4

y5

 

(0)

1

2

0

0

2

6

-36+2

y1=y4=y5=0

y3

(1)

0

1/3

0

1

-1/3

0

(3+2)/3

r.h.s =y3

y2

(2)

0

-1/3

1

0

1/3

-1/2

(9-7)/6

r.h.s =y2

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

y1

y2

y3

y4

y5

 

(0)

1

0

6

0

4

3

-27-5

y2=y4=y5=0

y3

(1)

0

0

1

1

0

-1/2

(5-)/2

r.h.s =y3

y2

(2)

0

1

-3

0

-1

3/2

(-9+7)/2

r.h.s =y1

Range

of

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Optimal

solution

Z

y1

y2

y3

y4

y5

 

(0)

1

0

12

6

4

0

-12-8

y2=y3=y4=0

y5

(1)

0

0

-2

-2

0

1

-5+

r.h.s =y5

y1

(2)

0

1

0

3

-1

0

3+2

r.h.s =y1