¬OMirror Image of Simplex Method.
See Table 6.10, 6.11 »P Fig.6.1 (p.210, 211)
Simplex Method ¥ÑSuboptimal basic solution¶}©l¨D¸Ñ¡A´Âoptimum «e¶i¡A
Dual Simplex Method ¥Ñ Superoptimal basic solution ¶}©l¨D¸Ñ¡A´Âoptimum «e¶i¡C
¸ÑÃD¨BÆJ¡G
For Maximization Problem
¦bEq.0 ªº©Ò¦³«Y¼Æ§¡¬°«Dt¡A¦p¦¹the basic solution ¤~¬O Superoptimal.
The basic solution ·|¬OInfeasible ¥u¦³·í¦³¨ÇÅܼƬ°t¼Æ¡CDual Simplex ªk·|³v¨B°§C¥Ø¼Ð¨ç¼ÆÈ¡A¦P®É«O«ù¦bEq.0 ªº©Ò¦³«Y¼Æ§¡¬°«Dt¡A¨Ã³v¨B¥h°£¨äȬ°t¼ÆªºÅܼơAª½¨ì©Ò¦³ªºÅܼƳ̫᧡¬°«Dt¡C³Ì«áªºbasic solution §Y¬°³ÌÀu¸Ñ¡C
Step 1. Initialization
Step 2. Feasibility test
Step 3. Iteration
|
Step 3.1 |
¨M©w¥X°òÅÜ¼Æ (leaving basic variable): ¥Ñ°òÅܼƤ¤¿ï¨ú¦³³Ì¤jµ´¹ïȪºt¼Æ¬°¥X°òÅܼơC |
|
Step 3.2 |
¨M©w¤J°òÅÜ¼Æ (entering basic variable): ¥Ñ«D°òÅܼƤ¤¿ï¨ú¨ºÓ¦beq. 0 ¤¤¥i³z¹L»Pstep 3.1¤¤ªº¥X°òÅܼƦC°µ°ª´µ®ø¥hºtºâ(Gaussian elimination)«á³Ì§ÖÅܬ°0ªÌ¬°¤J°òÅܼơC |
|
Step 3.3 |
¨D¥X·sªºbasic solution: ¥Ø¼Ð¦bSet the nonbasic variables equal to 0¤§«á¡A¨CÓbasic variable »PZȧYµ¥©ó·sªºrhsªºÈ¡C¦^Step 2 ¶i¦æ Feasibility Test. |
½d¨Ò¡G
Maximize Z = -4y1 ¡V 12 y2 ¡V18 y3,
s.t. y1 + 3 y3 >= 3
2 y2 + 2 y3 >= 5
y1, y2, y3 >=0
קאּ
Minimize Z = 4y1 + 12 y2 +18 y3,
s.t. -y1 - 3 y3 <= -3
-2 y2 - 2 y3 <= -5
y1, y2, y3 >=0
¦¹ÃD¬°Wyndor Glass Co. (p.82) °ÝÃD¤§Dual Prblem
Table 7.1 Dual Simplex Method applied to Wyndor Glass Co. Dual Problem
Iteration |
Basic var. |
Eq. |
Coefficient of |
r.h.s |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
||||
|
Z |
(0) |
1 |
4 |
12 |
18 |
0 |
0 |
0 |
0 |
y4 |
(1) |
0 |
-1 |
0 |
-3 |
1 |
0 |
-3 |
|
y5 |
(2) |
0 |
0 |
-2 |
-2 |
0 |
1 |
-5 |
Iteration |
Basic var. |
Eq. |
Coefficient of |
r.h.s |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
||||
|
Z |
(0) |
1 |
4 |
0 |
6 |
0 |
6 |
-30 |
1 |
y4 |
(1) |
0 |
-1 |
0 |
-3 |
1 |
0 |
-3 |
|
y2 |
(2) |
0 |
0 |
1 |
1 |
0 |
-1/2 |
5/2 |
Iteration |
Basic var. |
Eq. |
Coefficient of |
r.h.s |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
||||
|
Z |
(0) |
1 |
2 |
0 |
0 |
2 |
6 |
-36 |
2 |
y3 |
(1) |
0 |
1/3 |
0 |
1 |
-1/3 |
0 |
1 |
|
y2 |
(2) |
0 |
-1/3 |
1 |
0 |
1/3 |
-1/2 |
3/2 |
The corresponding basic solution is (y1, y2, y3, y4, y5) = (0, 3/2, 1, 0, 0), Z = -36
The optimal solution for the dual of this problem is
(x1*, x2*, x3*, x4*, x5*)=(2,6,2,0,0)
¤ñ¸û Table 7.1 »P Table 4.8. (p.99)
is replaced by
¥Nªírelative rates at which the coefficients are to be changed.
The values assigned to the may represent ¡K¡K¡K(p.267).
For any given value of, ¡K¡K. (p.267)
always has this piecewise linear and convex form (Fig. 7.1 of p.267)
Summary
1. Solve the problem with =0 by the simplex method.
2. Use the sensitivity analysis procedure (case 2a and 3, sec. 6.7) to introduce the changes into Eq.(0).
3. Increase until one of the nonbasic variables has its coefficient in Eq.(0) go negative (or until has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method to find the new optimal solution. Return to step 3.
Table 7.2 of p.269
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||||||||||||||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
|||||||||||||||||||
|
|
(0) |
1 |
0 |
0 |
0 |
|
|
36-2 |
x4=0 x5=0 |
||||||||||||||
x3 |
(1) |
0 |
0 |
0 |
1 |
1/3 |
-1/3 |
2 |
x3=2 |
|||||||||||||||
x2 |
(2) |
0 |
0 |
1 |
0 |
1/2 |
0 |
6 |
x2=6 |
|||||||||||||||
x1 |
(3) |
0 |
1 |
0 |
0 |
-1/3 |
1/3 |
2 |
x1=2 |
|||||||||||||||
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||||||||||||||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
|||||||||||||||||||
|
|
(0) |
1 |
0 |
0 |
|
0 |
|
27+5 |
x3=0 x5=0 |
||||||||||||||
x4 |
(1) |
0 |
0 |
0 |
3 |
1 |
-1 |
6 |
x4=6 |
|||||||||||||||
x2 |
(2) |
0 |
0 |
1 |
-3/2 |
0 |
1/2 |
3 |
x2=3 |
|||||||||||||||
x1 |
(3) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
x1=4 |
|||||||||||||||
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||||||||||||||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
|||||||||||||||||||
|
|
(0) |
1 |
0 |
|
|
0 |
0 |
12+8 |
x2=0 x3=0 |
||||||||||||||
x4 |
(1) |
0 |
0 |
2 |
0 |
1 |
0 |
12 |
x4=12 |
|||||||||||||||
x5 |
(2) |
0 |
0 |
2 |
-3 |
0 |
1 |
6 |
x5=6 |
|||||||||||||||
x1 |
(3) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
x1=4 |
|||||||||||||||
Maximize
s.t. for i = 1,2,¡K., m
and for j = 1,2,¡K, n
The goal is to identify he optimal solution as a function of .
Summary
1. Solve the problem with =0 by the simplex method.
2. Use the sensitivity analysis procedure (case 1, sec. 6.7) to introduce the changes to the r.h.s. column.
3. Increase until one of the basic variables has its value in the r.h.s. column go negative (or until has been increased as far as desired).
4. Use this variable as the leaving basic variable for an iteration of the dual simplex method to find the new optimal solution. Return to step 3.
Table 7.3 of p.271
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
|||||
|
|
(0) |
1 |
2 |
0 |
0 |
2 |
6 |
-36+2 |
y1=y4=y5=0 |
y3 |
(1) |
0 |
1/3 |
0 |
1 |
-1/3 |
0 |
(3+2)/3 |
r.h.s =y3 |
|
y2 |
(2) |
0 |
-1/3 |
1 |
0 |
1/3 |
-1/2 |
(9-7)/6 |
r.h.s =y2 |
|
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
|||||
|
|
(0) |
1 |
0 |
6 |
0 |
4 |
3 |
-27-5 |
y2=y4=y5=0 |
y3 |
(1) |
0 |
0 |
1 |
1 |
0 |
-1/2 |
(5-)/2 |
r.h.s =y3 |
|
y2 |
(2) |
0 |
1 |
-3 |
0 |
-1 |
3/2 |
(-9+7)/2 |
r.h.s =y1 |
|
Range of |
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
Optimal solution |
|||||
Z |
y1 |
y2 |
y3 |
y4 |
y5 |
|||||
|
|
(0) |
1 |
0 |
12 |
6 |
4 |
0 |
-12-8 |
y2=y3=y4=0 |
y5 |
(1) |
0 |
0 |
-2 |
-2 |
0 |
1 |
-5+ |
r.h.s =y5 |
|
y1 |
(2) |
0 |
1 |
0 |
3 |
-1 |
0 |
3+2 |
r.h.s =y1 |