ìÃD Primal Problem |
°¸ÃD Dual Problem |
|
|
s.t.
|
s.t.
|
pºâ½ÆÂø«×=m2n |
pºâ½ÆÂø«×= n2m ¡]·ím¸û¤j®É¦³§Q¡^ |
¯x°}ªí¥Üªk
Max Z ¡× C X s.t. A X <= b X >= 0 |
Min Yo ¡× Y b s.t. Y A >= C Y >= 0 |
¥ç¥iªí¥Ü¦p¤U¡G |
|
Min ¢ÑT¢æ s.t. ¢Ï¢æ <= ¢ê ¢æ >= ¢¯ |
Max ¢êT¢ç s.t. ¢ÏT ¢ç >= C ¢ç >= ¢¯ |
Ex: p.198 Table 6.1 |
|
s.t.
|
s.t.
|
Ex1:
ìÃD |
°¸ÃD |
MAX 20 A + 30 C SUBJECT TO A <= 60 C <= 50 A + 2 C <= 120 END |
MIN 60 X + 50 Y + 120 Z SUBJECT TO 1 X + 1 Z >= 20 1 Y + 2 Z >= 30 END |
O.F.V. 2100.00
VARIABLE VALUE Reduced Cost A 60 0 C 30 0
ROW SLACK Dual Prices 2) 0 5 3) 20 0 4) 0 15 |
O.F.V. 2100.00
VARIABLE VALUE Reduced Cost X 5 0 Y 0 20 Z 15 0 ROW SLACK 2) 0 -60 3) 0 -30 |
Ex2:
ìÃD MAX 4 X - 2 Y SUBJECT TO 2 X + 6 Y <= 12 3 X - 2 Y ¡× 1 4 X + 2 Y >= 5 END |
ìÃD¤§ÅÜ«¬ MAX 4 X - 2 Y SUBJECT TO 2 X + 6 Y <= 12 Æ¡ 3 X - 2 Y <= 1 Æ¡ -3 X + 2 Y <= -1 Æ¡ -4 X - 2 Y <= -5 END |
Æ[©À¡G 3 X - 2 Y ¡×1 ¥iµø¬° 3 X - 2 Y >= 1»P 3 X - 2 Y <=1¨â¦¡¦P®É¦¨¥ß¡A¤S>=¦¡¨âÃä¦P¼¥H-1¥i§ï¬°<=¤§¤£µ¥¦¡¡C |
|
°¸ÃD |
|
MIN 12 R + S - T - 5 U SUBJECT TO 2 R + 3 S - 3 T - 4 U >= 4 6 R - 2 S + 2 T - 2 U >= -2 END |
Table 6.2 Primal-Dual Table for LP, illustrated by the Wyndor Glass Co. Example.
Table 6.3 Correspondence between Entitties in Primal and Dual Problems
One Problem |
|
Other Problem |
Constraint i |
ßà |
Variable i |
Objective func. |
ßà |
Right Sides |
²ºâªkªººë¯«¦b§ä´M¤@²Õ°òÅܼƻP¬Û¹ïÀ³ªºBF Solution, ¨Ï±orow 0 ªº©Ò¦³«Y¼Æ§¡¬°«Dt¡C
Condition
for Optimality¡G
Zj - Cj >= 0,
for j = 1, 2, 3,¡K., n,
Yi >= 0, for I = 1,
2,3,¡K.., m.
Table 6.4 Notation for Entries in row 0 of a simplex Tableau
|
|
|
Coefficient of: |
|
||||||||
Iteration |
Basic Var. |
Eq. |
Z |
X1 |
X2 |
¡K. |
Xn |
Xn+1 |
Xn+2 |
¡K. |
Xn+m |
Right side1 |
any |
Z |
0 |
1 |
Z1-C1 |
Z2-C2 |
¡K. |
Zn-Cn |
y1 |
y2 |
¡K. |
ym |
y0 |
Table 6.5 Row 0 and corresponding dual solution for each iteration for the Wyndor glass Co. example.
iteration |
Primal Problem |
Dual Problem |
y0 |
|||||||||
Row 0 |
y1 |
y2 |
y3 |
Z1- C1 |
Z2- C2 |
|||||||
0 |
-3 |
-5 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
-3 |
-5 |
0 |
1 |
-3 |
0 |
0 |
5/2 |
0 |
30 |
0 |
5/2 |
0 |
-3 |
0 |
30 |
2 |
0 |
0 |
0 |
3/2 |
1 |
36 |
0 |
3/2 |
1 |
0 |
0 |
36 |
Z* = 36 = y0*
®z¹ï°¸©Ê¡GX¬°ìÃD¤§¥i¦æ¸Ñ¡AY¬°°¸ÃD¤§¥i¦æ¸Ñ¡A«hC X <= Y b
±j¹ï°¸©Ê¡GX*¬°ìÃD¤§³ÌÀu¸Ñ¡AY*¬°°¸ÃD¤§³ÌÀu¸Ñ¡A«hC X*=Y* b
Note that¡G
ìÃD¬°Max °ÝÃD¡A¦s¦bC X <= C X*
°¸ÃD¬°Min °ÝÃD¡A¦s¦bY b >= Y* b
¤¬¸É©Ê¡G¦b²ºâªkªº¨C¦¸¤ÏÂÐpºâ¤¤¡A¥i¨D±oìÃDªº¥i¦æ¸Ñ»P°¸ÃDªº¤¬¸É¸Ñ (¦b¦C0¤¤¡A¬°®tÃBÅܼƪº«Y¼Æ)¡A¨ä¤¤ C X=Y b¡CYX¤£¬OìÃDªº³ÌÀu¸Ñ¡A«hY¥ç¤£¬O°¸ÃDªº¥i¦æ¸Ñ¡C
¤¬¸É³ÌÀu©Ê¡G¦b³Ì«á¤@¦¸ªº¤ÏÂÐpºâ®É¡A²ºâªk¥i¦P®É¨D¥XìÃDªº³ÌÀu¸ÑX*»P°¸ÃDªº¤¬¸É³ÌÀu¸ÑY*¡A¨ä¤¤ C X*=Y* b¡AY*¥ÑYi*²Õ¦¨¡A§Y¬°¼v»ù¡C
¹ïºÙ©Ê¡G°¸ÃDªº°¸ÃD¬°ìÃD
1.
Y¬YìÃD©Î°¸ÃD¦³¥i¦æ¸Ñ¥B¦³¦³¬Éªº¥Ø¼Ð¨ç¼Æ¡A´«¨¥¤§¡A·|¦³³Ì¨Î¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©ÎìÃD¤]·|¦³³Ì¨Î¸Ñ¡A¥B®z¹ïºÙ©Ê»P±j¹ïºÙ©Ê§¡¾A¥Î¡C
2.
Y¬YìÃD©Î°¸ÃD¦³¥i¦æ¸Ñ¦ý¥Ø¼Ð¨ç¼Æ¬°µL¬É®É¡A´«¨¥¤§¡A¨S¦³³Ì¨Î¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©ÎìÃD±N§ä¤£¨ì¥i¦æ¸Ñ¡C
3.
Y¬YìÃD©Î°¸ÃDµL¥i¦æ¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©ÎìÃD¤£¬O¨S¦³¥i¦æ¸Ñ¡A´N¬O¨ä¥Ø¼Ð¨ç¼Æ¬°µL¬É¡AÁ`¤§¡A±N§ä¤£¨ì³Ì¨Î¸Ñ¡C
Table 6.7 Association between variables in Primal and Dual problems
Primal variable |
Associated Dual variable |
Original vari. Xi |
Zj - Cj (surplus vari.) j = 1,2,¡K,n |
Slack vari. Xn+1 |
yi (original vari.) i=1,2,..,m |
Table 6.10 Classification of Basic solutions (p.210)
|
Satisfies Condition for Optimality |
||
Yes |
No |
||
Feasible ? |
Yes |
Optimal |
Suboptimal |
No |
Superoptimal |
Neither feasible Nor Superoptimal |
Basic solutions ¥i¥Î¨âºØ¤è¦¡¨Ó¤ÀÃþ¡A¤À§O¬°¬O§_¥i¦æ (condition for feasibility) »P¬O§_¬°³Ì¨Î (condition for optimality)¡C«eªÌ³z¹LÂX¥R¸Ñ¤¤ªº©Ò¦³ÅܼƬO§_¬°«Dt(0©Î¥¿¼Æ)¨Ó§PÂ_¡A«áªÌ³z¹L¦b¦C0ªº«Y¼Æ¬O§_¥þ¬°«Dt¼Æ¨Ó§PÂ_¡C
Table 6.11
Primal basic solution |
Complementary Dual basic solution |
Suboptimal |
Superoptimal |
Optimal |
Optimal |
Superoptimal |
Suboptimal |
Neither feasible not superoptimal |
Neither feasible not superoptimal |
Table 6.13 Constructing the Dual of the Dual Problem
Dual Problem |
|
Converted to standard Form |
Minimize yo= y b s.t. y A >= c and y >= 0 |
à |
Maximize (-yo)= -y b s.t. -y A <= - c and y >= 0 |
|
||
Converted to standard Form |
|
Its Dual Problem |
Maximize Z = c X s.t. A X <= b and X >= 0 |
ß |
Minimize (-Z) = -c X s.t. -A X >= - b and X >= 0 |
Table 6.14 Corresponding Primal-Dual forms
Primal Problem (or Dual Problem) |
Dual Problem (or Primal Problem) |
||
Maximize Z (or yo) |
Minimize yo (or Z) |
||
¨î¦¡ i¡G |
ÅÜ¼Æ yi
(or Xi)¡G |
||
<= |
Form |
|
yi >= 0 |
= |
Form |
|
unconstrainted |
>= |
Form |
|
yi
'<= 0 |
ÅÜ¼Æ Xj (or yj)¡G |
¨î¦¡ j¡G |
||
|
Xj >= 0 |
>= |
Form |
|
unconstrainted |
= |
Form |
|
Xj
'<= 0 |
<= |
Form |
Table 6.15 One Primal-Dual Form for the Radiation Therapy Example
Primal Problem |
|
Dual Problem |
Maximize -Z=-0.4X1-0.5X2 s.t. 0.3X1+0.1X2<=2.7 0.5X1+0.5X2=6 0.6X1+0.4X2>=6 and X1>=0 X2>=0 |
|
Minimize yo=2.7y1+6y2+6y3' s.t. y1>=0 y2 unconstrainted in sign y3'<=0 and 0.3y1+0.5y2+0.6y3'>=-0.4 0.1y1+0.5y2+0.4y3'>=-0.5 |
Table 6.18
|
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
|||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
||||
New initial tableau |
Z |
(0) |
1 |
-4 |
-5 |
0 |
0 |
0 |
0 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
|
x4 |
(2) |
0 |
0 |
2 |
0 |
1 |
0 |
24 |
|
x5 |
(3) |
0 |
2 |
2 |
0 |
0 |
1 |
18 |
¦¹·sªí®æ«Y¦bc1, a31, b2 °µ¤F§ó¥¿¡C
ìÃDªº³Ì¥½ªí®æ
Final tableau for original model |
Z |
(0) |
1 |
0 |
0 |
0 |
3/2 |
1 |
36 |
x3 |
(1) |
0 |
0 |
0 |
1 |
1/3 |
-1/3 |
2 |
|
x2 |
(2) |
0 |
0 |
1 |
0 |
1/2 |
0 |
6 |
|
x1 |
(3) |
0 |
1 |
0 |
0 |
-1/3 |
1/3 |
2 |
³Ì¨Î¸Ñ¬° (2, 6), Z = 36
Table 6.17 (p.219)
Revised final tableau |
Z |
(0) |
1 |
z*- |
y* |
Z* |
x3 |
(1) |
0 |
A* |
S* |
b* |
|
x2 |
(2) |
0 |
||||
x1 |
(3) |
0 |
×¥¿ÃDªº³Ì¥½ªí®æ
Revised final tableau |
Z |
(0) |
1 |
-2 |
0 |
0 |
3/2 |
1 |
54 |
x3 |
(1) |
0 |
1/3 |
0 |
1 |
1/3 |
-1/3 |
6 |
|
x2 |
(2) |
0 |
0 |
1 |
0 |
1/2 |
0 |
12 |
|
x1 |
(3) |
0 |
2/3 |
0 |
0 |
-1/3 |
1/3 |
-2 |
Table 6.19×¥¿ÃDªº³Ì¥½ªí®æ³z¹LGaussian elimination ¦A¤©¥H×¥¿
|
Basic Var. |
Eq. |
Coefficient of: |
r.h.s. |
|||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
||||
Converted to proper form |
Z |
(0) |
1 |
0 |
0 |
0 |
1/2 |
2 |
48 |
x3 |
(1) |
0 |
0 |
0 |
1 |
1/2 |
-1/2 |
7 |
|
x2 |
(2) |
0 |
0 |
1 |
0 |
1/2 |
0 |
12 |
|
x1 |
(3) |
0 |
1 |
0 |
0 |
-1/2 |
1/2 |
-3 |
¦bc1, a31, b2 °µ¤F§ó¥¿¤§«á¡A¤W¦Cªí®æ§i¶D§Ų̳́θѥÑì¨Óªº (2, 6) §ï¬° (-3, 12)¡A¦Ó«áªÌ¥Ñ©ó¦b°òÅܼƤ¤ªºx1 ¬°t¼Æ¡A©Ò¥H¸Ó¸ÑÅܬ° non-feasible¡A¦ý¥Ñ©ó¦C0 ªº©Ò¦³«Y¼Æ§¡¬°«Dt¡A©Ò¥H¨äº¡¨¬optimality test¡C¥ÑTable 6.10 ¥iª¾¦¹basic solution ÄÝSuperoptimal¡C¥i¶i¤@¨B¦b¥ÎDual simplex method ¨D¸Ñ¡C
1. Revision of model
2. Revision of final tableau
3. Conversion to proper form from Gaussian elimination
4. Feasibility test
5. Optimality test
6. Reoptimization
(¸É¥R¤º®e)
¤À¤T¤è±¨Ó±´°Q¡G¦³Ãö1.¥Ø¼Ð¨ç¼Æªº«Y¼ÆȪºÅÜ°Ê¡A2.¦³Ãö¨î¦¡ªº«Y¼ÆȪºÅÜ°Ê¡A3.¨ä¥¦¦³Ãö¨î¦¡ªº rhs ȪºÅÜ°Ê (¥]¬AÃä»Ú¸ê°T¡B»P¨ä¥¦)¡C
100 % Rule by Bradley, Hax and Magnanti (1977): Any combination of change will not change the basis¡]°ò©³¡^if the sum of the percentages of slack used sums to less than 100%. |
the % of slack =¥Ø¼Ð¨ç¼Æªº«Y¼ÆªºÅܰʶq/allowable decrease or increase |
½d¨Ò¡G MAX 20 A + 30 C -----> 17 A + 20 C SUBJECT TO 2) A <= 65 3) C <= 50 4) A + 2 C <= 120 END |
O.F.V. = 2100 ¥B A = 60¡A C = 30 |
¥H LINDO §@±Ó·P«×¤ÀªR¤§³¡¥÷µ²ªG¦p¤Uªí¡G
VARIABLE |
CURRENT COEF. |
ALLOWABLE INCREASE |
ALLOWABLE DECREASE |
A |
20 |
INFINITY |
5 |
C |
30 |
10 |
30 |
100 % Rule¡G (20-17)/5 + (30-20)/30 = 0.6 + 0.333 = 0.933 < 100 % |
Basis ¤£ÅÜ¡A A = 60¡A C = 30 --> new O.F.V. = 2100 - 60 * 3 - 30 * 10 = 2100 - 480 = 1620 |
O.F.V.§ïµ½¶q =(value of variable j) x (dual price of row i) x e ¨ä¤¤¡A e ¬° row i ¤¤ variable j ªº«Y¼Æªº´î¤Öªº·L¤pÈ |
½d¨Ò¡G |
MAX 20 A + 30 C SUBJECT TO 2) A <= 65 3) C <= 50 4) A + 2 C <= 115 -->§ó§ï¬°A + 2.01 C <= 115 END O.F.V. = 2050.00 |
VARIABLE VALUE REDUCED COST A 65 0 C 25* 0 ROW SLACK DUAL PRICES 2) 0 5 3) 25 0 4) 0 15* |
¹w´ú¤§ O.F.V. = 2050 + (25*15*(-0.01)) = 2050 - 3.75 = 2046.25 ¯u¥¿¤§ O.F.V. = 2046.269, O.F.V. decrease by 3.731 |
Ãä»Ú¸ê°T¥]¬A¡GÃä»Ú¦¨¥»¡]Marginal Cost¡^»PÃä»Ú»ùÈ¡]Marginal Value¡^¡A¦¹¤G¦Wµü¤À§O»P LINDO ¤¤¨Ï¥ÎªºReduced Cost¤ÎDual Prices ¬Û³q¡C |
¡°¦³Ãö Reduced Cost »P Dual Prices ¤§±´°Q¡A½Ð°Ñ¦Ò¡yLP¸É¥R±Ð§÷¡z¤¤¤§ LINDO ¶i¶¥¡C |
¼W¥[ '<=¨î¦¡'ªº rhs Ȫí¥Ü©ñÃP¨î½d³ò¡A¡u¥i¦æ°ì¡v¡]feasible domain¡^±NÂX¤j¡A¥Ø¼Ð¨ç¼ÆÈ¡]O.F.V.¡^¥i±æ¼W¥[¡C
´î¤Ö '<=¨î¦¡'ªº rhs È¡A ¥Ø¼Ð¨ç¼ÆÈ¥i±æ´î¤Ö¡C
¼W¥[ '>=¨î¦¡'ªº rhs Ȫí¥Ü¥[¤j¨î½d³ò¡A¡u¥i¦æ°ì¡v±NÁY¤p¡A¥Ø¼Ð¨ç¼ÆÈ¥i±æ´î¤p¡C
´î¤Ö '>=¨î¦¡'ªº rhs È¡A¥Ø¼Ð¨ç¼ÆÈ¥i±æ¼W¥[¡C
¼W¥[ '=¨î¦¡'ªº rhs Ȫí¥Ü²¾°ÊÃä¬É¡]Boundary¡^¡A¥Ø¼Ð¨ç¼ÆÈ¥i¯à¥[¤j¥i¯à´î¤p¡C
´î¤Ö '=¨î¦¡'ªº rhs È¡A ¥Ø¼Ð¨ç¼ÆÈ¥i¯à¥[¤j¥i¯à´î¤p¡C
·í Dual Prices ¤§È ¡Ú 0 ®É¡A¨ä¬Û¹ïÀ³¤§ SLACK or SURPLUS ¬° 0¡Aªí¥Ü¸Ó¨î¦¡¤w¥Î¨ì·¥ÂI¡]¤f»y¤Æ»¡ªk¡^¡AY¯à¼W¥[ rhs ¤§È¡A«h O.F.V. ¥i¼W¥[»P Dual Price ¬Û¦P¤§¶q¡C |
¥[¤J·sÅܼƩηs¨î¦¡¦³®É¬O¥²nªº¦Ò¶q¡A
·sÅܼơG»Ý©ñ¸m©ó©Ò¦³¬ÛÃö¤§³B¡A¥]¬A¥Ø¼Ð¨ç¼Æ¤Î¦U¨î¦¡¡A·sÅܼƦb¥Ø¼Ð¨ç¼Æ¤Î¦U¨î¦¡¤¤¯A¤Î¤§«Y¼Æ¥ç»Ý¥[¥H¦Ò¶q¡C
·s¨î¦¡¡G¥i¯à¬Oì¨Ó¬G·N¤£¥[©Î©¿²¤¥¼¥[¡A±Ó·P«×¤ÀªR¦³®É¯A¤Î·s¨î¦¡¡A·í°ÝÃD¬°µL¦h¸Ñ¡]unbounded¡^®É¡A±`±`¬O¦]¬Y¤@«n¨î¦¡³Q©¿²¤¤F¡C
(±Ð¬ì®Ñ¤º®e)
One or more of the ¡¥right hand side¡¦ values have been changed.
Right side of final row 0:
Right side of final rows 1,2,¡K,m:
¨Ò¡G±Nb = [4 12 18]T §ï¬° à [4 24 18]T
¨Ò¡Gb2 ¥Ñ12 §ï¬°24
Max. |
3X1 + 5 X2 |
|
s.t. |
X1 <=4 2X2<=24 3X1+2X2 <=18 X1, X2 >=0 |
|
Table 6.20 Revised data for Wyndor glass Co. problem after just b2 is changed.
|
BasicVar. |
Eq. |
Coefficient of: |
r.h.s. |
|||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
||||
Final tableau after reoptimization |
Z |
(0) |
1 |
9/2 |
0 |
0 |
0 |
5/2 |
45 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
3/2 |
1 |
0 |
0 |
1/2 |
9 |
|
x4 |
(3) |
0 |
-3 |
0 |
0 |
1 |
-1 |
6 |
¥tªk¡G¥u¦Ò¼{¦³§ó§ïªº¨î¦¡(2nd
column of S*)»P¯A¤ÎªºÅܼÆ(2nd component of y*)¡A ©Ò¥HZ = ìÈ36+18=54
|
à |
|
|
à |
|
|
à |
|
This range of values for b2 is referred to allowable range to stay feasible.
Refer to Table 6.20 of p.226, x3, x2, x4 ¬°°òÅܼơAx1»P x5¬°«D°òÅܼơC
¥Ñ©ó«D°òÅܼƤ§È¦bbasic solution ¤¤¨äȬ°0¡Aקï¦U«Y¼Æ¨ä¹ê¤£·|¹ï³Ì¨ÎȦ³¼vÅT¡A¥u»Ý½T»{¸ÓȬO§_¤´¬°³Ì¨Î¸Ñ¡C
¨Ò¡G
Max. |
3X1 + 5 X2 ×¥¿¬° |
4X1 + 5 X2 |
s.t. |
X1 <=4 2X2<=24 3X1+2X2 <=18 X1, X2 >=0 |
X1 <=4 2X2<=24 2 X1 + 2 X2 <=18 X1, X2 >=0 |
ìÃD |
Max Z = CX s.t. A X <= b |
|
°¸ÃD |
Min y0=y b s.t. yA >= C |
|
|
Min y0=[y1* y2* y3*]T [4 24 18] s.t. [y1* y2* y3*]T [1 0 3] >=3 [y1* y2* y3*]T [0 2 2] >=5 |
|
×¥¿«á¨î¦¡ |
s.t. [y1* y2* y3*]T [1 0 2] >=4 |
¥Ñ¤Wªí¥iª¾¡A§ó§ïìÃD¤¤«D°òÅܼƪº«Y¼Æ¬Û¹ï©ó¨ä°¸ÃD¦Ó¨¥¡A¥u¹ï¤@Ө¦³¼vÅT¡A©Ò¥HYìÃD y* º¡¨¬·sªº¨î¦¡¡A«hìÃDªº³Ì¨Î¸Ñ¦b×¥¿«á¤´¬°³Ì¨Î¸Ñ¡C
The allowable range to stay optimal
º¡¨¬ Cj <= y* Aj
°²³]ìÃD¤¤¦h¤F¤@Ó«D°òÅܼơA¨ä«Y¼Æ¬Ò¬°0¡A¦A±ÄCase 2a ªº¤è¦¡¥h×¥¿«Y¼Æ¡C
¨Ò¡G
Max. |
3X1 + 5 X2 ×¥¿¬° |
3X1 + 3 X2 |
s.t. |
X1 <=4 2X2<=24 3X1+2X2 <=18 X1, X2 >=0 |
X1<=4 3X2 <=24 3X1 + 4 X2 <=18 X1, X2 >=0 |
Table 6.21
|
BasicVar. |
Eq. |
Coefficient of: |
r.h.s. |
|||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
||||
Revised final tableau |
Z |
(0) |
1 |
9/2 |
7 |
0 |
0 |
5/2 |
45 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
3/2 |
2 |
0 |
0 |
1/2 |
9 |
|
x4 |
(3) |
0 |
-3 |
-1 |
0 |
1 |
-1 |
6 |
|
Converted to proper form |
Z |
(0) |
1 |
-3/4 |
0 |
0 |
0 |
3/4 |
27/2 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
3/4 |
1 |
0 |
0 |
1/4 |
9/2 |
|
x4 |
(3) |
0 |
-9/4 |
0 |
0 |
1 |
-3/4 |
21/2 |
|
After reoptimization (0ne iteration of the simplex method) |
Z |
(0) |
1 |
0 |
0 |
3/4 |
0 |
3/4 |
33/2 |
x1 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
0 |
1 |
-3/4 |
0 |
1/4 |
3/2 |
|
x4 |
(3) |
0 |
0 |
0 |
9/4 |
1 |
-3/4 |
39/2 |
Step 1. |
¦bìSimplex Method ªº³Ì¥½ªí®æ¤¤¥[¤J·sªº¨î¦¡¡A¨Ï¥Î·sªºSlack or Artificial variable. |
Step 2. |
Âà´«¬°¾A·íªº®æ¦¡ |
Step 3. |
·íì³Ì¨Î¸ÑÅܬ°Superoptimal ®É¡A¨Ï¥ÎDual Simplex Method ¨Ó«·s³Ì¨Î¤Æ¨D¸Ñ¡C |
¨Ò¡G
¥[¤J 2X1 + 3 X2 <=24
Table 6.22
|
BasicVar. |
Eq. |
Coefficient of: |
r.h.s. |
||||||
Z |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
||||
Revised final tableau |
Z |
(0) |
1 |
9/2 |
0 |
0 |
0 |
5/2 |
0 |
45 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
3/2 |
1 |
0 |
0 |
1/2 |
0 |
9 |
|
x4 |
(3) |
0 |
-3 |
0 |
0 |
1 |
-1 |
0 |
6 |
|
x6 |
New |
0 |
2 |
3 |
0 |
0 |
0 |
1 |
24 |
¤Wªí¬õ®Ø°Ï¬°¤£¾A·í¡AEq(2) x (¡V3) + New Eq. ¥i§ïµ½¡Aµ²ªG¦p¤Uªí¡G
Converted to proper form |
Z |
(0) |
1 |
9/2 |
0 |
0 |
0 |
5/2 |
0 |
45 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
3/2 |
1 |
0 |
0 |
1/2 |
0 |
9 |
|
x4 |
(3) |
0 |
-3 |
0 |
0 |
1 |
-1 |
0 |
6 |
|
x6 |
New |
0 |
-5/2 |
0 |
0 |
0 |
-3/2 |
1 |
-3 |
x6¬°t¼Æ¡A©Ò¥H (0,9) ªº¸Ñ¬° non-feasible, ¦ý¦]¬° Row 0 ªº«Y¼Æ§¡¬°«Dt¡A©Ò¥HÄÝ Superoptimal, ¥i¦A³z¹L Dual Simplex Method ¨D¸Ñ¨Ã±o¥X¤Uªí¡G
Reoptimzation after one iteration of Dual simplex Method |
Z |
(0) |
1 |
1/3 |
0 |
0 |
0 |
0 |
5/3 |
40 |
x3 |
(1) |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
4 |
|
x2 |
(2) |
0 |
2/3 |
1 |
0 |
0 |
0 |
1/3 |
8 |
|
x4 |
(3) |
0 |
-4/3 |
0 |
0 |
1 |
0 |
-2/3 |
8 |
|
x5 |
New |
0 |
-5/3 |
0 |
0 |
0 |
1 |
-2/3 |
2 |
(0, 8) ¬°·sªº³Ì¨Î¸Ñ¡A¥BZ = 40 ¬°·sªº O.F.V.
°²³]·QÁA¸Ñ¤@өΦhÓÅܼƦb¬Y¤@°Ï¶¡¤º³sÄòÅܰʮɡA¨ä¹ï³Ì¨Î¸Ñ¤§ÅÜ°Ê
¼vÅT¦p¦ó¡A¦¹®É¥i±Ä°Ñ¼Æ³W¹º¤è¦¡¶i¦æ¡C
°²³]²Ä¤G¨î¦¡¤§ rhs È b2 ¤§È¦b 12 »P 24 ¶¡³sÄòÅÜ°Ê¡A
«h±N b2 ©w¸q¬° 12 + £c¡A¨ä¤¤ £c = 0 ¦Ü 12
¥H ²ºâªk¶i¦æ¨D¸Ñ¡A¥i±o¥X¥H¤UÃþ¦üµ²ªG¡G
¢è = 36 + 3/2 * £c
¢æ1 = 2 - 1/3 * £c
¢æ2 = 6 + 1/2 * £c
¢æ3 = 2 + 1/3 * £c
¢æ4 = 0
¢æ5 = 0
¦¹ªk¦P®É¾A¥Î©ó O.F.V. ©Î¨î¦¡¤¤¬YÅܼƤ§«Y¼Æ¡C
¥ç¥i¦P®É¤ÀªR¼ÆÓÅܼƤ§«Y¼Æ¤§ÅܰʩμÆӨ¤§ rhs Ȥ§ÅÜ°Ê¡C
1. ½Ð¥H¹ê¨ÒÄÄz½u©Ê³W¹º¤§ìÃD¡Ð°¸ÃD¡]Primal-Dual¡^Ãö«Y¤¤¤§®z¹ï°¸©Ê¡A±j¹ï°¸©Ê¡A¤¬¸É©Ê¡A¤Î¹ïºÙ©Ê¡C
2. ½Ð¥H¹ê¨ÒÄÄz½u©Ê³W¹º¤§¡u«á³Ì¨Î¤Æ¤ÀªR¡v¡A¥]¬A¡G
¤@¯ëªº±Ó·P«×¤ÀªR¡GÆ« O.F.V. ¤¤ ¬YÅܼƫY¼Æ§ïÅÜ
Ƭ ¬Y¤@¨î¦¡¤¤ ¬YÅܼƫY¼Æ§ïÅÜ
Æ ¬Y¤@¨î¦¡¤¤ rhs ¤§È§ïÅÜ
¤Î°Ñ¼Æ³W¹º