Chap.6. ¹ï°¸²z½×»P±Ó·P«×¤ÀªR

 

6.1 ¹ï°¸²z½×ªº¥»½è

­ìÃD°¸ÃD¤§Ãö«Y Primal-Dual relations

 

­ìÃD Primal Problem

°¸ÃD Dual Problem

s.t.

s.t.

­pºâ½ÆÂø«×=m2n

­pºâ½ÆÂø«×= n2m ¡]·ím¸û¤j®É¦³§Q¡^

 

¯x°}ªí¥Üªk

Max     Z   ¡×  C X

s.t.    A X <=  b

          X >=  0

Min    Yo  ¡× Y b

s.t.    Y A >= C

Y >= 0

¥ç¥iªí¥Ü¦p¤U¡G

 

Min  ¢ÑT¢æ

s.t.    ¢Ï¢æ <= ¢ê

¢æ >= ¢¯

Max ¢êT¢ç

s.t.    ¢ÏT ¢ç >=  C

¢ç >= ¢¯

 

Ex: p.198 Table 6.1

 

s.t.

s.t.

 


­ìÃD°¸ÃD½m²ß

Ex1:

­ìÃD

°¸ÃD

MAX      20 A + 30 C

SUBJECT TO

              A <= 60

              C <= 50

        A + 2 C <= 120

END

MIN  60 X + 50 Y + 120 Z        

SUBJECT TO                      

      1 X +          1 Z >= 20  

             1 Y +   2 Z >= 30  

END                             

O.F.V.   2100.00            

                             

VARIABLE VALUE  Reduced Cost

       A    60             0

       C    30             0

                            

  ROW    SLACK  Dual Prices 

   2)        0             5

   3)       20             0

   4)        0            15

O.F.V.   2100.00            

                            

VARIABLE VALUE  Reduced Cost

       X     5             0

       Y     0            20

       Z    15             0

  ROW    SLACK              

   2)        0           -60

   3)        0           -30

Ex2:

­ìÃD

MAX       4 X -  2 Y

SUBJECT TO

       2 X + 6 Y <= 12

       3 X - 2 Y ¡×  1

       4 X + 2 Y >=  5

END

­ìÃD¤§ÅÜ«¬

MAX       4 X -  2 Y

SUBJECT TO

       2 X + 6 Y <= 12

Æ¡     3 X - 2 Y <=  1

Æ¡    -3 X + 2 Y <= -1

Æ¡    -4 X - 2 Y <= -5

END

Æ[©À¡G 3 X - 2 Y ¡×1 ¥iµø¬° 3 X - 2 Y >= 1»P 3 X - 2 Y <=1¨â¦¡¦P®É¦¨¥ß¡A¤S>=¦¡¨âÃä¦P­¼¥H-1¥i§ï¬°<=¤§¤£µ¥¦¡¡C

°¸ÃD

MIN      12 R + S - T - 5 U           

SUBJECT TO                            

         2 R + 3 S - 3 T - 4 U >=  4  

         6 R - 2 S + 2 T - 2 U >= -2  

END                                   

 

Table 6.2 Primal-Dual Table for LP, illustrated by the Wyndor Glass Co. Example.

 

Table 6.3 Correspondence between Entitties in Primal and Dual Problems

One Problem

 

Other Problem

Constraint i

ßà

Variable i

Objective func.

ßà

Right Sides

 

²ºâªkªººë¯«¦b§ä´M¤@²Õ°òÅܼƻP¬Û¹ïÀ³ªºBF Solution, ¨Ï±orow 0 ªº©Ò¦³«Y¼Æ§¡¬°«D­t¡C

 

Condition for Optimality¡G

Zj - Cj >= 0, for j = 1, 2, 3,¡K., n,

Yi >= 0, for I = 1, 2,3,¡K.., m.

 

Table 6.4 Notation for Entries in row 0 of a simplex Tableau

 

 

 

Coefficient of:

 

Iteration

Basic Var.

Eq.

Z

X1

X2

¡K.

Xn

Xn+1

Xn+2

¡K.

Xn+m

Right side1

any

Z

0

1

Z1-C1

Z2-C2

¡K.

Zn-Cn

y1

y2

¡K.

ym

y0

 

Table 6.5 Row 0 and corresponding dual solution for each iteration for the Wyndor glass Co. example.

 

iteration

Primal Problem

Dual Problem

 

y0

Row 0

y1

y2

y3

Z1- C1

Z2- C2

0

-3

-5

0

0

0

0

0

0

0

-3

-5

0

1

-3

0

0

5/2

0

30

0

5/2

0

-3

0

30

2

0

0

0

3/2

1

36

0

3/2

1

0

0

36

Z* = 36 = y0*


®z¹ï°¸©Ê¡A±j¹ï°¸©Ê¡A¤¬¸É©Ê¡A¤Î¹ïºÙ©Ê

 

*   ®z¹ï°¸©Ê¡GX¬°­ìÃD¤§¥i¦æ¸Ñ¡AY¬°°¸ÃD¤§¥i¦æ¸Ñ¡A«hC X <= Y b

* ±j¹ï°¸©Ê¡GX*¬°­ìÃD¤§³ÌÀu¸Ñ¡AY*¬°°¸ÃD¤§³ÌÀu¸Ñ¡A«hC X*=Y* b

Note that¡G

­ìÃD¬°Max °ÝÃD¡A¦s¦bC X <= C X*

°¸ÃD¬°Min °ÝÃD¡A¦s¦bY b >= Y* b

*   ¤¬¸É©Ê¡G¦b²ºâªkªº¨C¦¸¤ÏÂЭpºâ¤¤¡A¥i¨D±o­ìÃDªº¥i¦æ¸Ñ»P°¸ÃDªº¤¬¸É¸Ñ (¦b¦C0¤¤¡A¬°®tÃBÅܼƪº«Y¼Æ)¡A¨ä¤¤ C X=Y b¡C­YX¤£¬O­ìÃDªº³ÌÀu¸Ñ¡A«hY¥ç¤£¬O°¸ÃDªº¥i¦æ¸Ñ¡C

* ¤¬¸É³ÌÀu©Ê¡G¦b³Ì«á¤@¦¸ªº¤ÏÂЭpºâ®É¡A²ºâªk¥i¦P®É¨D¥X­ìÃDªº³ÌÀu¸ÑX*»P°¸ÃDªº¤¬¸É³ÌÀu¸ÑY*¡A¨ä¤¤ C X*=Y* b¡AY*¥ÑYi*²Õ¦¨¡A§Y¬°¼v»ù¡C

* ¹ïºÙ©Ê¡G°¸ÃDªº°¸ÃD¬°­ìÃD

 


Duality Theorem¡G

1.          ­Y¬Y­ìÃD©Î°¸ÃD¦³¥i¦æ¸Ñ¥B¦³¦³¬Éªº¥Ø¼Ð¨ç¼Æ¡A´«¨¥¤§¡A·|¦³³Ì¨Î¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©Î­ìÃD¤]·|¦³³Ì¨Î¸Ñ¡A¥B®z¹ïºÙ©Ê»P±j¹ïºÙ©Ê§¡¾A¥Î¡C

2.          ­Y¬Y­ìÃD©Î°¸ÃD¦³¥i¦æ¸Ñ¦ý¥Ø¼Ð¨ç¼Æ¬°µL¬É®É¡A´«¨¥¤§¡A¨S¦³³Ì¨Î¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©Î­ìÃD±N§ä¤£¨ì¥i¦æ¸Ñ¡C

3.          ­Y¬Y­ìÃD©Î°¸ÃDµL¥i¦æ¸Ñ®É¡A«h¨ä¹ïÀ³ªº°¸ÃD©Î­ìÃD¤£¬O¨S¦³¥i¦æ¸Ñ¡A´N¬O¨ä¥Ø¼Ð¨ç¼Æ¬°µL¬É¡AÁ`¤§¡A±N§ä¤£¨ì³Ì¨Î¸Ñ¡C

 

Table 6.7 Association between variables in Primal and Dual problems

Primal variable

Associated Dual variable

Original vari. Xi

Zj - Cj (surplus vari.) j = 1,2,¡K,n

Slack vari. Xn+1

yi (original vari.) i=1,2,..,m

 

Table 6.10 Classification of Basic solutions (p.210)

 

Satisfies Condition for Optimality

Yes

No

 

Feasible ?

Yes

Optimal

Suboptimal

No

Superoptimal

Neither feasible Nor Superoptimal

 

Basic solutions ¥i¥Î¨âºØ¤è¦¡¨Ó¤ÀÃþ¡A¤À§O¬°¬O§_¥i¦æ (condition for feasibility) »P¬O§_¬°³Ì¨Î (condition for optimality)¡C«eªÌ³z¹LÂX¥R¸Ñ¤¤ªº©Ò¦³ÅܼƬO§_¬°«D­t(0©Î¥¿¼Æ)¨Ó§PÂ_¡A«áªÌ³z¹L¦b¦C0ªº«Y¼Æ¬O§_¥þ¬°«D­t¼Æ¨Ó§PÂ_¡C


Table 6.11

Primal basic solution

Complementary Dual basic solution

Suboptimal

Superoptimal

Optimal

Optimal

Superoptimal

Suboptimal

Neither feasible not superoptimal

Neither feasible not superoptimal

 

Table 6.13 Constructing the Dual of the Dual Problem

Dual Problem

 

Converted to standard Form

Minimize    yo= y b

s.t.

y A >= c

and y >= 0

 

 

à

Maximize     (-yo)= -y b

s.t.

-y A <= - c

and y >= 0

 

Converted to standard Form

 

Its Dual Problem

Maximize     Z = c X

s.t.

A X <= b

and X >= 0

 

 

ß

Minimize   (-Z) = -c X

s.t.

-A X >= - b

and X >= 0

 

Table 6.14 Corresponding Primal-Dual forms

Primal Problem (or Dual Problem)

Dual Problem (or Primal Problem)

Maximize  Z (or yo)

Minimize yo (or Z)

­­¨î¦¡ i¡G

ÅÜ¼Æ yi (or Xi)¡G

<=

Form

 

yi >= 0

=

Form

 

unconstrainted

>=

Form

 

yi '<= 0

ÅÜ¼Æ Xj (or yj)¡G

­­¨î¦¡ j¡G

 

Xj >= 0

>=

Form

 

unconstrainted

=

Form

 

Xj '<= 0

<=

Form

 

Table 6.15 One Primal-Dual Form for the Radiation Therapy Example

Primal Problem

 

Dual Problem

Maximize  -Z=-0.4X1-0.5X2

s.t.

0.3X1+0.1X2<=2.7

0.5X1+0.5X2=6

0.6X1+0.4X2>=6

and

X1>=0

X2>=0

 

Minimize yo=2.7y1+6y2+6y3'

s.t.

y1>=0

y2 unconstrainted in sign

y3'<=0

and

0.3y1+0.5y2+0.6y3'>=-0.4

0.1y1+0.5y2+0.4y3'>=-0.5

 


6.6 ±Ó·P«×¤ÀªR Sensitivity analysis

 

Table 6.18

 

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Z

x1

x2

x3

x4

x5

 

New initial tableau

 

Z

(0)

1

-4

-5

0

0

0

0

x3

(1)

0

1

0

1

0

0

4

x4

(2)

0

0

2

0

1

0

24

x5

(3)

0

2

2

0

0

1

18

¦¹·sªí®æ«Y¦bc1, a31, b2 °µ¤F§ó¥¿¡C

 

­ìÃDªº³Ì¥½ªí®æ

 

Final tableau for original model

Z

(0)

1

0

0

0

3/2

1

36

x3

(1)

0

0

0

1

1/3

-1/3

2

x2

(2)

0

0

1

0

1/2

0

6

x1

(3)

0

1

0

0

-1/3

1/3

2

³Ì¨Î¸Ñ¬° (2, 6), Z = 36

 

Table 6.17  (p.219)

 

Revised final tableau

 

Z

(0)

1

z*-

y*

Z*

x3

(1)

0

 

A*

 

S*

 

b*

x2

(2)

0

x1

(3)

0

­×¥¿ÃDªº³Ì¥½ªí®æ

 

Revised final tableau

 

Z

(0)

1

-2

0

0

3/2

1

54

x3

(1)

0

1/3

0

1

1/3

-1/3

6

x2

(2)

0

0

1

0

1/2

0

12

x1

(3)

0

2/3

0

0

-1/3

1/3

-2

 

Table 6.19­×¥¿ÃDªº³Ì¥½ªí®æ³z¹LGaussian elimination ¦A¤©¥H­×¥¿

 

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Z

x1

x2

x3

x4

x5

 

Converted to proper form

Z

(0)

1

0

0

0

1/2

2

48

x3

(1)

0

0

0

1

1/2

-1/2

7

x2

(2)

0

0

1

0

1/2

0

12

x1

(3)

0

1

0

0

-1/2

1/2

-3

 

¦bc1, a31, b2 °µ¤F§ó¥¿¤§«á¡A¤W¦Cªí®æ§i¶D§Ú­Ì³Ì¨Î¸Ñ¥Ñ­ì¨Óªº (2, 6) §ï¬° (-3, 12)¡A¦Ó«áªÌ¥Ñ©ó¦b°òÅܼƤ¤ªºx1 ¬°­t¼Æ¡A©Ò¥H¸Ó¸ÑÅܬ° non-feasible¡A¦ý¥Ñ©ó¦C0 ªº©Ò¦³«Y¼Æ§¡¬°«D­t¡A©Ò¥H¨äº¡¨¬optimality test¡C¥ÑTable 6.10 ¥iª¾¦¹basic solution ÄÝSuperoptimal¡C¥i¶i¤@¨B¦b¥ÎDual simplex method ¨D¸Ñ¡C 

 

Summary of procedure for Sensitivity Analysis

1.          Revision of model

2.          Revision of final tableau

3.          Conversion to proper form from Gaussian elimination

4.          Feasibility test

5.          Optimality test

6.          Reoptimization

 

6.7 Applying Sensitivity Analysis

 

(¸É¥R¤º®e)

¤À¤T¤è­±¨Ó±´°Q¡G¦³Ãö1.¥Ø¼Ð¨ç¼Æªº«Y¼Æ­ÈªºÅÜ°Ê¡A2.¦³Ãö­­¨î¦¡ªº«Y¼Æ­ÈªºÅÜ°Ê¡A3.¨ä¥¦¦³Ãö­­¨î¦¡ªº rhs ­ÈªºÅÜ°Ê (¥]¬AÃä»Ú¸ê°T¡B»P¨ä¥¦)¡C

 

¥Ø¼Ð¨ç¼Æªº«Y¼Æ­ÈªºÅÜ°Ê

 

100 % Rule by Bradley, Hax and Magnanti (1977):

Any combination of change will not change the basis¡]°ò©³¡^if the sum of the percentages of slack used sums to less than 100%.

the % of slack =¥Ø¼Ð¨ç¼Æªº«Y¼ÆªºÅܰʶq/allowable decrease or increase

   ½d¨Ò¡G    MAX   20 A + 30 C     ----->  17 A + 20 C

             SUBJECT TO           

             2)        A  <=  65

             3)        C  <=  50

             4)  A + 2 C  <=  120

            END

O.F.V. = 2100 ¥B A = 60¡A C = 30

 

¥H LINDO §@±Ó·P«×¤ÀªR¤§³¡¥÷µ²ªG¦p¤Uªí¡G

VARIABLE

CURRENT COEF.

ALLOWABLE INCREASE

ALLOWABLE DECREASE

A

20

INFINITY

5

C

30

10

30

 

100 % Rule¡G

           (20-17)/5 + (30-20)/30 = 0.6 + 0.333 = 0.933 < 100 %

   Basis ¤£ÅÜ¡A A = 60¡A C = 30

   --> new O.F.V. = 2100 - 60 * 3 - 30 * 10 = 2100 - 480 = 1620

 


­­¨î¦¡ªº«Y¼Æ­ÈªºÅÜ°Ê

 

O.F.V.§ïµ½¶q =(value of variable j) x (dual price of row i) x e

¨ä¤¤¡A e ¬° row i ¤¤ variable j ªº«Y¼Æªº´î¤Öªº·L¤p­È

 

½d¨Ò¡G

   MAX   20 A + 30 C

             SUBJECT TO

             2)        A  <=  65     

             3)        C  <=  50

             4)  A + 2 C  <=  115 -->§ó§ï¬°A + 2.01 C <= 115

             END                 

   O.F.V.  =  2050.00

 

   VARIABLE  VALUE  REDUCED COST

          A     65            0

          C     25*           0

   ROW       SLACK  DUAL PRICES

          2)     0            5

          3)    25            0

          4)     0           15*

 

 

¹w´ú¤§ O.F.V. = 2050 + (25*15*(-0.01)) = 2050 - 3.75 = 2046.25 

¯u¥¿¤§ O.F.V.   = 2046.269,

O.F.V. decrease by 3.731

 

 


Ãä»Ú¸ê°T¡]Marginal Information¡^

 

Ãä»Ú¸ê°T¥]¬A¡GÃä»Ú¦¨¥»¡]Marginal Cost¡^»PÃä»Ú»ù­È¡]Marginal Value¡^¡A¦¹¤G¦Wµü¤À§O»P LINDO ¤¤¨Ï¥ÎªºReduced Cost¤ÎDual Prices ¬Û³q¡C

 

¡°¦³Ãö Reduced Cost »P Dual Prices ¤§±´°Q¡A½Ð°Ñ¦Ò¡yLP¸É¥R±Ð§÷¡z¤¤¤§ LINDO ¶i¶¥¡C

 


¦³Ãö­­¨î¦¡ªº rhs ­ÈªºÅÜ°Ê

*   ¼W¥[ '<=­­¨î¦¡'ªº rhs ­Èªí¥Ü©ñÃP­­¨î½d³ò¡A¡u¥i¦æ°ì¡v¡]feasible domain¡^±NÂX¤j¡A¥Ø¼Ð¨ç¼Æ­È¡]O.F.V.¡^¥i±æ¼W¥[¡C

*   ´î¤Ö '<=­­¨î¦¡'ªº rhs ­È¡A ¥Ø¼Ð¨ç¼Æ­È¥i±æ´î¤Ö¡C

*   ¼W¥[ '>=­­¨î¦¡'ªº rhs ­Èªí¥Ü¥[¤j­­¨î½d³ò¡A¡u¥i¦æ°ì¡v±NÁY¤p¡A¥Ø¼Ð¨ç¼Æ­È¥i±æ´î¤p¡C

*   ´î¤Ö '>=­­¨î¦¡'ªº rhs ­È¡A¥Ø¼Ð¨ç¼Æ­È¥i±æ¼W¥[¡C

*   ¼W¥[ '=­­¨î¦¡'ªº rhs ­Èªí¥Ü²¾°ÊÃä¬É¡]Boundary¡^¡A¥Ø¼Ð¨ç¼Æ­È¥i¯à¥[¤j¥i¯à´î¤p¡C

*   ´î¤Ö '=­­¨î¦¡'ªº rhs ­È¡A ¥Ø¼Ð¨ç¼Æ­È¥i¯à¥[¤j¥i¯à´î¤p¡C

 


»P Dual Prices ªºÆ[©Àµ²¦X¡G

     

·í Dual Prices ¤§­È ¡Ú 0 ®É¡A¨ä¬Û¹ïÀ³¤§ SLACK or SURPLUS ¬° 0¡Aªí¥Ü¸Ó­­¨î¦¡¤w¥Î¨ì·¥ÂI¡]¤f»y¤Æ»¡ªk¡^¡A­Y¯à¼W¥[ rhs ¤§­È¡A«h O.F.V. ¥i¼W¥[»P Dual Price ¬Û¦P¤§¶q¡C

 


¥[¤J·sÅܼƩηs­­¨î¦¡

   ¥[¤J·sÅܼƩηs­­¨î¦¡¦³®É¬O¥²­nªº¦Ò¶q¡A

*      ·sÅܼơG»Ý©ñ¸m©ó©Ò¦³¬ÛÃö¤§³B¡A¥]¬A¥Ø¼Ð¨ç¼Æ¤Î¦U­­¨î¦¡¡A·sÅܼƦb¥Ø¼Ð¨ç¼Æ¤Î¦U­­¨î¦¡¤¤¯A¤Î¤§«Y¼Æ¥ç»Ý¥[¥H¦Ò¶q¡C

*      ·s­­¨î¦¡¡G¥i¯à¬O­ì¨Ó¬G·N¤£¥[©Î©¿²¤¥¼¥[¡A±Ó·P«×¤ÀªR¦³®É¯A¤Î·s­­¨î¦¡¡A·í°ÝÃD¬°µL­­¦h¸Ñ¡]unbounded¡^®É¡A±`±`¬O¦]¬Y¤@­«­n­­¨î¦¡³Q©¿²¤¤F¡C

 


(±Ð¬ì®Ñ¤º®e)

Case 1 changes in bi  (p.224)

 

One or more of the ¡¥right hand side¡¦ values have been changed.

Right side of final row 0:

Right side of final rows 1,2,¡K,m:

¨Ò¡G±Nb = [4 12 18]T  §ï¬° à [4 24 18]T


    


 


¨Ò¡Gb2 ¥Ñ12 §ï¬°24

Max.

3X1 + 5 X2

 

s.t.

X1 <=4

2X2<=24

3X1+2X2 <=18

X1, X2 >=0

 

 

Table 6.20 Revised data for Wyndor glass Co. problem after just b2 is changed.

 

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Z

x1

x2

x3

x4

x5

Final tableau after reoptimization

 

Z

(0)

1

9/2

0

0

0

5/2

45

x3

(1)

0

1

0

1

0

0

4

x2

(2)

0

3/2

1

0

0

1/2

9

x4

(3)

0

-3

0

0

1

-1

6

 

¥tªk¡G¥u¦Ò¼{¦³§ó§ïªº­­¨î¦¡(2nd column of S*)»P¯A¤ÎªºÅܼÆ(2nd component of y*)¡A  ©Ò¥HZ = ­ì­È36+18=54

 

à

 

à

 

à

 

This range of values for b2 is referred to allowable range to stay feasible.

 

Case 2a. Changes in the coefficients of a Nonbasic variables

 

Refer to Table 6.20 of p.226, x3, x2, x4 ¬°°òÅܼơAx1»P x5¬°«D°òÅܼơC

¥Ñ©ó«D°òÅܼƤ§­È¦bbasic solution ¤¤¨ä­È¬°0¡A­×§ï¦U«Y¼Æ¨ä¹ê¤£·|¹ï³Ì¨Î­È¦³¼vÅT¡A¥u»Ý½T»{¸Ó­È¬O§_¤´¬°³Ì¨Î¸Ñ¡C

 

¨Ò¡G

Max.

3X1 + 5 X2  ­×¥¿¬°

4X1 + 5 X2

s.t.

X1 <=4

2X2<=24

3X1+2X2 <=18

X1, X2 >=0

X1 <=4

2X2<=24

2 X1 + 2 X2 <=18

X1, X2 >=0

 

­ìÃD

Max Z = CX

s.t. A X <= b

 

°¸ÃD

Min y0=y b

s.t. yA >= C

 

 

Min y0=[y1* y2* y3*]T [4 24 18]

s.t. [y1* y2* y3*]T [1 0 3] >=3

   [y1* y2* y3*]T [0 2 2] >=5

­×¥¿«á­­¨î¦¡

s.t. [y1* y2* y3*]T [1 0 2] >=4

 

¥Ñ¤Wªí¥iª¾¡A§ó§ï­ìÃD¤¤«D°òÅܼƪº«Y¼Æ¬Û¹ï©ó¨ä°¸ÃD¦Ó¨¥¡A¥u¹ï¤@­Ó­­¨î¦¡¦³¼vÅT¡A©Ò¥H­Y­ìÃD y* º¡¨¬·sªº­­¨î¦¡¡A«h­ìÃDªº³Ì¨Î¸Ñ¦b­×¥¿«á¤´¬°³Ì¨Î¸Ñ¡C

 

The allowable range to stay optimal

º¡¨¬ Cj <= y* Aj

 

Case 2b. Introduction of a New variable

 

°²³]­ìÃD¤¤¦h¤F¤@­Ó«D°òÅܼơA¨ä«Y¼Æ¬Ò¬°0¡A¦A±ÄCase 2a ªº¤è¦¡¥h­×¥¿«Y¼Æ¡C

 

Case 3. Changes in the Coefficients of a Basic variable

 

¨Ò¡G

Max.

3X1 + 5 X2  ­×¥¿¬°

3X1 + 3 X2

s.t.

X1 <=4

2X2<=24

3X1+2X2 <=18

X1, X2 >=0

X1<=4

3X2 <=24

3X1 + 4 X2 <=18

X1, X2 >=0

 

Table 6.21

 

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Z

x1

x2

x3

x4

x5

Revised final tableau

Z

(0)

1

9/2

7

0

0

5/2

45

x3

(1)

0

1

0

1

0

0

4

x2

(2)

0

3/2

2

0

0

1/2

9

x4

(3)

0

-3

-1

0

1

-1

6

Converted to proper form

Z

(0)

1

-3/4

0

0

0

3/4

27/2

x3

(1)

0

1

0

1

0

0

4

x2

(2)

0

3/4

1

0

0

1/4

9/2

x4

(3)

0

-9/4

0

0

1

-3/4

21/2

After reoptimization

(0ne iteration of the simplex method)

Z

(0)

1

0

0

3/4

0

3/4

33/2

x1

(1)

0

1

0

1

0

0

4

x2

(2)

0

0

1

-3/4

0

1/4

3/2

x4

(3)

0

0

0

9/4

1

-3/4

39/2

 

Case 4. Introduction of a New constraint

 

Step 1.

¦b­ìSimplex Method ªº³Ì¥½ªí®æ¤¤¥[¤J·sªº­­¨î¦¡¡A¨Ï¥Î·sªºSlack or Artificial variable.

Step 2.

Âà´«¬°¾A·íªº®æ¦¡

Step 3.

·í­ì³Ì¨Î¸ÑÅܬ°Superoptimal ®É¡A¨Ï¥ÎDual Simplex Method ¨Ó­«·s³Ì¨Î¤Æ¨D¸Ñ¡C

 

¨Ò¡G

¥[¤J 2X1 + 3 X2 <=24

Table 6.22

 

Basic

Var.

 

Eq.

Coefficient of:

 

r.h.s.

Z

x1

x2

x3

x4

x5

x6

Revised final tableau

Z

(0)

1

9/2

0

0

0

5/2

0

45

x3

(1)

0

1

0

1

0

0

0

4

x2

(2)

0

3/2

1

0

0

1/2

0

9

x4

(3)

0

-3

0

0

1

-1

0

6

x6

New

0

2

3

0

0

0

1

24

¤Wªí¬õ®Ø°Ï¬°¤£¾A·í¡AEq(2) x (¡V3) + New Eq. ¥i§ïµ½¡Aµ²ªG¦p¤Uªí¡G

Converted to proper form

Z

(0)

1

9/2

0

0

0

5/2

0

45

x3

(1)

0

1

0

1

0

0

0

4

x2

(2)

0

3/2

1

0

0

1/2

0

9

x4

(3)

0

-3

0

0

1

-1

0

6

x6

New

0

-5/2

0

0

0

-3/2

1

-3

x6¬°­t¼Æ¡A©Ò¥H (0,9) ªº¸Ñ¬° non-feasible, ¦ý¦]¬° Row 0 ªº«Y¼Æ§¡¬°«D­t¡A©Ò¥HÄÝ Superoptimal, ¥i¦A³z¹L Dual Simplex Method ¨D¸Ñ¨Ã±o¥X¤Uªí¡G

Reoptimzation after one iteration of Dual simplex Method

Z

(0)

1

1/3

0

0

0

0

5/3

40

x3

(1)

0

1

0

1

0

0

0

4

x2

(2)

0

2/3

1

0

0

0

1/3

8

x4

(3)

0

-4/3

0

0

1

0

-2/3

8

x5

New

0

-5/3

0

0

0

1

-2/3

2

(0, 8) ¬°·sªº³Ì¨Î¸Ñ¡A¥BZ = 40 ¬°·sªº O.F.V.

 


¦³¨t²Îªº±Ó·P«×¤ÀªR¡Ð°Ñ¼Æ³W¹º

 

      °²³]·QÁA¸Ñ¤@­Ó©Î¦h­ÓÅܼƦb¬Y¤@°Ï¶¡¤º³sÄòÅܰʮɡA¨ä¹ï³Ì¨Î¸Ñ¤§ÅÜ°Ê

      ¼vÅT¦p¦ó¡A¦¹®É¥i±Ä°Ñ¼Æ³W¹º¤è¦¡¶i¦æ¡C

 

      °²³]²Ä¤G­­¨î¦¡¤§ rhs ­È b2 ¤§­È¦b 12 »P 24 ¶¡³sÄòÅÜ°Ê¡A

      «h±N b2 ©w¸q¬° 12 + £c¡A¨ä¤¤ £c = 0 ¦Ü 12

      ¥H ²ºâªk¶i¦æ¨D¸Ñ¡A¥i±o¥X¥H¤UÃþ¦üµ²ªG¡G

                    ¢è  = 36 + 3/2 * £c

                    ¢æ1 =  2 - 1/3 * £c

                    ¢æ2 =  6 + 1/2 * £c

                    ¢æ3 =  2 + 1/3 * £c

                    ¢æ4 =  0

                    ¢æ5 =  0

      ¦¹ªk¦P®É¾A¥Î©ó O.F.V. ©Î­­¨î¦¡¤¤¬YÅܼƤ§«Y¼Æ¡C

      ¥ç¥i¦P®É¤ÀªR¼Æ­ÓÅܼƤ§«Y¼Æ¤§Åܰʩμƭӭ­¨î¦¡¤§ rhs ­È¤§ÅÜ°Ê¡C

 


§@·~

1.      ½Ð¥H¹ê¨ÒÄÄ­z½u©Ê³W¹º¤§­ìÃD¡Ð°¸ÃD¡]Primal-Dual¡^Ãö«Y¤¤¤§®z¹ï°¸©Ê¡A±j¹ï°¸©Ê¡A¤¬¸É©Ê¡A¤Î¹ïºÙ©Ê¡C

 

2.      ½Ð¥H¹ê¨ÒÄÄ­z½u©Ê³W¹º¤§¡u«á³Ì¨Î¤Æ¤ÀªR¡v¡A¥]¬A¡G

    ¤@¯ëªº±Ó·P«×¤ÀªR¡GÆ« O.F.V.    ¤¤ ¬YÅܼƫY¼Æ§ïÅÜ

                      Ƭ ¬Y¤@­­¨î¦¡¤¤ ¬YÅܼƫY¼Æ§ïÅÜ

                      Æ­ ¬Y¤@­­¨î¦¡¤¤ rhs ¤§­È§ïÅÜ

    ¤Î°Ñ¼Æ³W¹º