Chap. 5 ²ºâªk¤§²z½×

5.1¸ÑÄÀ¦Wµü

5.2 ­×¥¿Â²ºâªk

¯x°}ªí¥Ü

¥H¯x°}ªí¥Ü²ºâªk¨D¸Ñ

­×¥¿¯x°}ªí¥Ü²ºâªk

5.3 ²ºâªk¤§°ò¥»¤º²[

 

---

5.1¸ÑÄÀ¦Wµü

 

Constraint boundary equation: ­­¨î¦¡ªºÃä¬É¤èµ{¦¡

       ¥Hµ¥¸¹¨ú¥N­­¨î¦¡¤¤¤§¤£µ¥¸¹©Ò§Î¦¨¤§¤èµ{¦¡¡C

 

       Ai1 X1 + Ai2 X2 + .... + Ain Xn = bi,  i = 1,2,...,m

 

¦¹ºØ¤èµ{¦¡©w¸q¤Fn «×ªÅ¶¡¤§´X¦ó¹Ï§Î¡C      

n

¶W­±(HyperPlane)

2

½u

3

­±

 

Max Z = 3 X1 + 5 X2

s.t.

 

X1 <= 4

2X2 <=12

3X1 + 2 X2 <=18

X1>=0, X2>=0

 


¨Ì¤W¨Ò¡A# of functional constraints = m =3

# of non-negativity = n=2, # of decision variables = n = 3

 

¥i¦æ¸Ñ

Feasible Solution

º¡¨¬©Ò¦³­­¨î¦¡¤§¤@²Õ¸Ñ¡C

¥i¦æ°ì

Feasible Domain

©Ò¦³¥i¦æ¸Ñ©Ò§Î¦¨¤§¶°¦X¡C

̊ƒ

Boundary

º¡¨¬¤@­Ó©Î¦h­ÓÃä¬É¤èµ{¦¡ªº¥i¦æ¸ÑºÙ¤§¬°¥i¦æ°ì¤§Ãä¬É¡C

¨¤ÂI

Corner Point

¦b n «×ªÅ¶¡¤¤ m+n ²Õ Boundary Eq.ùØ¥ô¿ï n²ÕÁp¥ß©Ò¨D±o¤§¸ÑºÙ¤§¡C

 

ªþ±a¾Ç²ß¥Î Excel ¸ÑÁp¥ß¦¡¡A½Ð¤U¸ü Excel6.zip

 

¨¤ÂI¥i¦æ¸Ñ 

Corner Point Feasible Solution

¥Ñ¨¤ÂI¤Þ¥Óªº©w¸q¡G¨Ã«D©Ò¦³¨¤ÂI¬Ò¬°¥i¦æ¸Ñ¡A¥u¦³¦b¥i¦æ°ìªºÃä¬É¤Wªº¨¤ÂI¤~¬O¨¤ÂI¥i¦æ¸Ñ¡C

¥Ñ¥i¦æ¸Ñ¤Þ¥Óªº©w¸q¡G¤£¦ì©ó¥ô¦ó¥i³s±µ¨ä¥L¨â­Ó¥i¦æ¸Ñªº½u¬q¤Wªº¥i¦æ¸Ñ¡C A feasible solution that does not lie on any line segment connecting two other feasible solutions.

¬Û¾F¨¤ÂI¥i¦æ¸Ñ

Adjacent Corner Point Feasible Solution

­Y¨â¨¤ÂI³QºÙ¬°¬Û¾F¡A«h³s±µ¸Ó¤GÂI¤§'½u'¥²¶·¦ì©ó¥i¦æ°ì¤§Ãä¬É¡C¤G¬Û¾F¨¤ÂI¤§¶¡¥u¦³¤@Ãä¬É¤èµ{¦¡¤£¦P

©w¸q¤èµ{¦¡

Defining Equation

¨M©wCP ªºÃä¬É¤èµ{¦¡¡C

Refer to p.156 Table 5.1 and Table 5.2

 

³q«h1a¡G

­Y Optimum Solution ¥u¦³¤@²Õ¡A«h¥²¬°¨¤ÂI¥i¦æ¸Ñ¡C

³q«h1b¡G

­Y Optimum Solution ¦³¦h²Õ¡A«h¨ä¤¤¦Ü¤Ö¦³¤G²Õ¬°¬Û¾F¨¤ÂI¥i¦æ¸Ñ¡C

 

ÃÒ©ú¡Gsee p.159 of Text Book

°²³]¦s¦b¤@­Ó³ÌÀu¸Ñ¡A¥B¨ä«D¨¤ÂI¥i¦æ¸Ñ¡C

¥Ñ¨¤ÂI¥i¦æ¸Ñªº©w¸q¥iª¾¨ä¬°¡u¤£¦ì©ó¥ô¦ó¥i³s±µ¨ä¥L¨â­Ó¥i¦æ¸Ñªº½u¬q¤Wªº¥i¦æ¸Ñ¡v¡C

­Y«D¬°¨¤ÂI¥i¦æ¸Ñ¡A«h¨ä¥i¦ì©ó¥ô¦ó¥i³s±µ¨ä¥L¨â­Ó¥i¦æ¸Ñªº½u¬q¤W¡C

 


 

 


¦p¤W©Ò­z¡AZ*­Y«Dµ¥©óZ1¥Bµ¥©óZ2 ¡A«hZ* ¤£¥i¯à¬°³ÌÀu¸Ñ¡C

 

³q«h2¡G

¨¤ÂI¥i¦æ¸Ñ¤§¼Æ¥Ø¦³­­¡C

 

ÃÒ©ú¡Gsee p.160 of Text Book

°²³]¦b n «×ªÅ¶¡ªº°ÝÃD¤¤¦³ m+n ­Ó­­¨î¦¡¡A«h¦³ m+n ­ÓÃä¬É¤èµ{¦¡¡C

¥ô¨ú n ­Ó¤èµ{¦¡Áp¥ß¨D¸Ñ¡C

³Ì¦h¥i¦³  ²Õ¸Ñ

 

 =

¨¤ÂI¤§¼Æ¥Ø¡ANcp

Ncp <

8 < 10

¨¤ÂI¥i¦æ¸Ñ¤§¼Æ¥Ø¡ANcpfs

Ncpfs < Ncp

5 < 8

 

³q«h3¡G

¤@¨¤ÂI¥i¦æ¸Ñ­YÀu©ó©Ò¦³ªº¬Û¾F¨¤ÂI¥i¦æ¸Ñ¡A«h¥²Àu©ó¨ä¥L¨¤ÂI¥i¦æ¸Ñ¡C

¡]¥Y¶°¦X¡^

    m = 50¡A n = 50¡A==²Õ¸Ñ

    ¥H²ºâªk¥h¸Ñ¡A¥u¶·¨D¬ù 100 ­Ó¨¤ÂI¥i¦æ¸Ñ¡C

 

ÃÒ©ú¡Gsee p.161 of Text Book

 


Fig.5.3

 


¥[¤JSlack variables (ÂX±i)¤§«áªº¬ÛÃö©w¸q¡G

Augmented CP solutionsÂX±i¨¤ÂI¸Ñ= basic solutions°ò¸Ñ

¥[¤JSlack variables and/or Artificial variables ¤§«áªº¨¤ÂI¸Ñ

°ò¸Ñ¡G¥]¬Am­Ó°òÅܼơA¨ä¾lªº«D°òÅܼƤ§­È¬°0¡Am¬°¥\¯à­­¨î¦¡ªº­Ó¼Æ

«ü¥ÜÅܼÆ

Indicating variable

¥i¥Nªí¬Y¤@Ãä¬É¤èµ{¦¡ªºÅܼơC

Refer to p.162 Table 5.3 and p.164 Table 5.4

 

Augmented CPF solutions ÂX±i¨¤ÂI¥i¦æ¸Ñ = Basic Feasible solutions°ò¥»¥i¦æ¸Ñ

¥[¤JSlack variables and/or Artificial variables ¤§«áªº¨¤ÂI¥i¦æ¸Ñ

°ò¥»¥i¦æ¸Ñ¡G¬O©Ò¦³ªºm­Ó°òÅܼƳ£ >=0 ªº¤@²Õ°ò¸Ñ¡A­Y¥ô¤@°òÅܼƤ§­È¬°0¡A¦¹°ò¥»¥i¦æ¸Ñ³QºÙ¬°°h¤Æ (degenerate)¡C

 

Table 5.5 BF solutions for the Wyndor Glass Co. Problem  (p.164)

Table 5 .6 Basic infeasible solutions for the Wyndor Glass Co. Problem (p.164)

Table 5.7 Sequence obtained by the Simplex method for the Wyndor Glass Co. Problem

Iteration

CPF solution

¨¤ÂI¥i¦æ¸Ñ

Defining Eq.

©w¸q¤èµ{¦¡

Nonbasic Var.

«D°òÅܼÆ

0

(0,0)

X1=0

X2=0

X1=0, X2=0

1

(0,6)

X1=0

2X2=12

X1=0, X4=0

2

(2,6)

2X2=12

3X1+2X2=18

X4=0, X5=0

 

---

 

5.2 ­×¥¿Â²ºâªk

¯x°}ªí¥Ü

¤@¯ë¼Ò¦¡

 

Max: 

Z = 3 X1 + 5 X2

s.t.

  X1        <=  4

       2 X2 <= 12

3 X1 + 2 X2 <= 18

  X1        >=  0

             X2 >=  0

³q¦¡

¯x°}ªí¥Üªk

Max:

Z =C1 X1 + C2 X2 + ..+Cn Xn

 

s.t.

i = 1, 2, ..., m

Xj >= 0, j = 1, 2, ..., n

Z = C X

A X <= b

X >= 0

¨ä¤¤¡AC = [ C1, C2, C3, ... , Cn ]

  

 

¤W¨Ò¦³n ­ÓÅܼơAn «×ªÅ¶¡¡An + m ­Ó­­¨î¦¡¡A»Ý­n m ­Ó slack variables¡A

¥[¤W m­Ó slack variables ¤§«áªº¼Ò¦¡¦p¤U©Ò¥Ü¡G

¤@¯ë¼Ò¦¡

Max  Z                              

  Z-3X1-5X2+0S1+ 0S2+0S3 = 0 

  s.t.                                

      X1     + 1 S1+ 0 S2+ 0 S3 =  4 

         2 X2+ 0 S1+ 1 S2+ 0 S3 = 12 

    3 X1+2 X2+ 0 S1+ 0 S2+ 1 S3 = 18 

¯x°}ªí¥Üªk 

¢Ñ = [ C, 0 ]

s.t.

[A, I]  = b

¨ä¤¤   >=0 ¥B [Xs]=

  ªº n+m  ­Ó elements ¤¤¡AÁ`¦@¦³ n ­Ó­È¬° 0 ©w¸q¬°«D°òÅܼơF°£¥h¦¹ n ­ÓÅܼơA¾l¤Uªº m ­ÓÅܼƬҬ°°òÅܼơA§Î¦¨¤@²Õ°ò©³ (Basis)¡C

­­¨î¦¡  [ A, I ] = b¡A¥i²¤Æ¬°  ¢Ð¢æB = b¡A¨ä¤¤¡A¢æB¡G°ò©³ (Basis)¡A¢Ð¡G°ò°} (Basic Matrix)¡A [A,I] ¤¤¥h±¼«D°òÅܼƤ§¹ïÀ³¦æ¡A¦A­«·s±Æ¦C¥H°t¦X¢æB¤§¶¶§Ç¡C

¨D¸Ñ¡G

¢æB= ¢Ð-1 * b

©w¸q ¢ÑB= [C, 0] ¤¤¥h±¼«D°òÅܼƤ§¹ïÀ³¶µ¡A¦A­«·s±Æ¦C¥H°t¦X¢æB ¤§¶¶§Ç         

      ¢è = ¢ÑB ¢æB = ¢ÑB¡]¢Ð-1 * b ¡^     

 

½d¨Ò¡G

Max: Z = 3 X1 + 5 X2

Max: Z = [3, 5]

s.t.

  X1         <=  4

2 X2 <= 12

3 X1 +  2 X2 <= 18

X1         >=  0

X2 >=  0

s.t.

A X <= B

X = >=

¥[¤W slack variables ¤§«á

Max Z                                                                                       

Z - 3 X1 - 5 X2 + 0 S1 + 0 S2 + 0 S3 =  0

s.t.                                     

      X1        +   S1               =  4

           2 X2        +   S2 +      = 12

    3 X1 + 2 X2               +   S3 = 18

 

¯x°}ªí¥Üªk

  ¡A  

 

---

 

¥H¯x°}ªí¥Ü²ºâªk¨D¸Ñ

iter 0

 

 

 

 

«D°òÅܼÆ

«D°òÅܼÆ

 

 

 

 

 

 

X1=0

X2=0

S1

S2

S3

rhs

°ò

S1

1

0

1

0

0

4

**

S2

0

2

0

1

0

12

©³ 

S3

3

2

0

0

1

18

Baseline

-3

-5

0

0

0

0

 

 

 

*

 

 

 

 

 

 

°ò°}B = ¥Ñ[ A,I ] ¥h±¼«D°òÅܼƤ§¹ïÀ³¦æ =

 

¢ÑB = ¥Ñ[ C, 0 ] ¥h±¼«D°òÅܼƤ§¹ïÀ³¶µ =  [ 0  0  0 ]

 

¢æB =¢Ð-1 b =

 

Z = CB¢æB = [0 0 0]

 

iter 1

X2 ¶i¤J°ò©³¡A S2 Â÷¶}

¢æB =

B =

 

¢ÑB  = [ 0 5 0 ]

(a)  ¢Ð-1=

(b) ¢Ð-1¢Ï = ¢Ð-1

(c)  ¢ÑB ¢Ð-1 = [ 0 5 0]  = [0 5/2 0]

(d)  ¢ÑB ¢Ð-1¢Ï -¢Ñ = [0 5/2 0] - [3 5] = [-3 0]

(e)  ¢æB= ¢Ð-1 b = ¢Ð-1

(f)  ¢è =¢ÑB ¢æB = [ 0 5 0 ] = 30

 

 

 

X1

X2

S1

S2

S3

rhs

 

S1

 

(b)= B-1A

 

(a)= B-1

 

(e)

 

X2

 

S3

Baseline

(d)=¢ÑB ¢Ð-1A-C

(c)= ¢ÑB ¢Ð-1

(f)

 

 

 

X1=0

X2=0

S1

S2

S3

rhs

 

S1

1

0

1

0

0

4

 

S2

0

1

0

1/2

0

6

** 

S3

3

0

0

-1

1

6

Baseline

-3*

0

0

5/2

0

Z=30

 

iter 2

X1 ¶i¤J°ò©³¡AS3 Â÷¶}°ò©³

 

¢ÑB  = [0 5 3]

 

 

 

 

X1

X2

S1

S2

S3

rhs

 

S1

0

0

1

1/3

-1/3

2

 

X2

0

1

0

1/2

0

6

 

X1

1

0

0

-1/3

1/3

2

Baseline

0

0

0

3/2

1

Z=36

 

---

 

­×¥¿¯x°}ªí¥Ü²ºâªk

 

Z

X1

X2

S1

S2

S3

rhs

Row 0

1

-3

-5

0

0

0

0

S1

0

1

0

1

0

0

4

S2

0

0

2

0

1

0

12

S3

0

3

2

0

0

1

18

¯x°}ªí¥Ü (iteration 0)

 

 

1

-C

0#

 

 

 

Z

X

 

 

=

 

0

 

 

¡K¡K.(1)

 

0*

A

I

 

 

 

Xs

 

 

 

b

 

 

0* µø I ¤§ dimension (m x m) ¦Ó¨M©w¨ä¬° m x 1 ¤§ ¹s¯x°}¡A

0# µø I ¤§ dimension (m x m) ¦Ó¨M©w¨ä¬° 1 x m ¤§ ¹s¯x°}¡A

C  ¬° 1 x n ¤§¯x°}¡A  A  ¬° m x n ¤§¯x°}¡C

 

¦¡(1)¨âÃä¦P­¼ ¥i¾É¥X¤U¦¡

 

 

 

¤´¥H¤W¨Ò°µ»¡©ú¡Aiter. 0 ¤Î 1 ²¤¡A¶È¥H  iter. 2 °µ¥Ü½d¡C

 

¥Ñ«e¨Ò¤wª¾ ¢Ð¯x°}  =

 

 

(a)

 

(b)

 

 

(c) ¢ÑB¢Ð-1 = [0 5 3] ¢Ð-1

= [0  3/2  1]

 

(d) ¢ÑB¢Ð-1¢Ï - ¢Ñ =

 [ 0  3/2  1 ] -[3  5]

= [0  0]

 

(e) ¢ÑB¢Ð-1 b = [ 0  3/2  1 ]

 

 

(f)  

¤å¦r¤è¶ô: ¢°


¢¯
¤å¦r¤è¶ô: ¢¯
¢¯
¤å¦r¤è¶ô: ¢¯
¢¯
¤å¦r¤è¶ô: ¢¯
¢¯

³Ì«á¤§³Ì¨Î´ú¸Õ: row 0 ( O.F.) ¤¤«D°òÅܼƤ§«Y¼ÆµL­t¼Æ«h¨ä¸Ñ¬°³Ì¨Î¸Ñ¡C

 

 

ªþ±a¾Ç²ß¥H Excel °µ¯x°}ªº¹Bºâ¡A½Ð¤U¸ü Excel6.zip

 

---

 

5.3 ²ºâªk¤§°ò¥»¤º²[

 

°²³]¦³¬Y¤@ LP ¼Ò¦¡¦p­ìÃD©Ò¥Ü¡A¨ä¸g¹L´X¦¸ªº iteration¤§«á¡A³Ì²×±o¨ì¤U¤è¥k°¼©Ò¥Ü¤§³Ì²×¸Ñ¡C¦b­ìÃD»P³Ì²×¸Ñ¤§¶¡¦s¦bµÛ¤@¨ÇÃö«Y¡A¥»¸`§Y¦b»¡©ú¦¹¨ÇÁô²[¤§¯S®í·N¸q¡C

 

­ìÃD

³Ì²×¸Ñ

 

X1

X2

S1

S2

S3

rhs

¦C0:

-3

-5

0

0

0

0

 

1

0

1

0

0

4

 

0

2

0

1

0

12

 

3

2

0

0

1

18

 

X1

X2

S1

S2

S3

rhs

¦C0:

0

0

0

2/3

1

36

 

0

0

1

1/3

-1/3

2

 

0

1

0

1/2

0

6

 

1

0

0

-1/3

1/3

2

 

¨ä¤¤

¢Ù* =¢ÑB¢Ð-1 A = y*A

¢Ï* =¢Ð-1 A

¢á* =¢Ð-1

b*  =¢Ð-1 b

y* =¢ÑB¢Ð-1

¢è*=¢ÑB¢Ð-1 b = y* b

¥iÆ[¹î¥X¥H¤U¨â­ÓÃö«Y¦¡¡G

¢ü*= t + y* T = [ -C  0  0 ] + [y*A  y*I  y*b]

= [y*A-C   y*I   y*b]

¢â*= ¢á*T = ¢Ð-1 T   = [¢Ð-1A  ¢Ð-1I  ¢Ð-1b]

 

µ²½×¡G¥u­n¨D±o  y*  »P  ¢á* ¡A§Y¥i¥Ñ¨D¥X

 

 ªº·N¸q¡G

¦b­ì©l¯x°}¤¤¤§ row j *  ¥[¦Ü row 0

½d¨Ò¡G

 

 

X1

X2

S1

S2

S3

rhs

 

row 0:

-3

-5

0

0

0

0

 

 

1

0

1

0

0

4

*0+row0

 

0

2

0

1

0

12

*3/2+row0

 

3

2

0

0

1

13

*1+row0

 

 ,  ±o final matrix

 

 

X1

X2

S1

S2

S3

rhs

row 0:

0

0

0

2/3

1

36

 ¤§·N¸q¡G

­ì©l¯x°}¤§ row j *  = ³Ì²×¯x°}¤§ row I

 

½d¨Ò¡G

­ì©l¯x°}

³Ì²×¯x°}

 

 

 

j=1

j=2

j=3

 

i=1

1

0

1

0

0

4

i=2

0

2

0

1

0

12

i=3

3

2

0

0

1

18

 

­ìÅܼÆ

slack

rhs

 

 

 

j=1

j=2

j=3

 

i=1

0

0

1

1/3

-1/3

2

i=2

0

1

0

1/2

0

6

i=3

1

0

0

-1/3

1/3

2

 

­ìÅܼÆ

slack

rhs

 

ÅçÃÒ

row 1: ­ì©l¯x°} (row 1)*1 + (row 2)*1/3 + (row 3)*(-1/3)

 

 

1

0

1

0

0

4

 

0

2/3

0

1/3

0

12/3

+)

-1

-2/3

0

0

-1/3

-18/6

check

0

0

1

1/3

-1/3

2

row 2: ­ì©l¯x°} (row 1)*0 +(row 2)*1/2 +(row 3)*0

 

 

0

0

0

0

0

0

 

0

1

0

1/2

0

12/2

+)

0

0

0

0

0

0

check

0

1

0

1/2

0

6

row 3: ­ì©l¯x°} (row 1)*0 + (row 2)*(-1/3) + (row 3)*(1/3)

 

 

0

0

0

0

0

0

 

0

-2/3

0

-1/3

0

-12/3

+)

3/3

2/3

0

0

1/3

18/3

check

1

0

0

-1/3

1/3

2

 

¶i¤@¨BÆ[¹î­ìÃD»P³Ì²×¸Ñ¤§¦C ¢¯(§Y O.F.)

[t] = [-C  0   0]

[t*] = [K*-C  y*  Z*]

= [ y*A-C   y*  y*b]

 

²ºâªk¤§ºë¯«§Y¦b§ä´M¤@²Õ°òÅܼƤΨä¬Û¹ïÀ³¤§¥i¦æ¸Ñ¡A¨Ï±o¦C¢¯¤§«Y¼Æ¬Ò¬°«D­t¹ê¼Æ¡C¡]max problem¡^

 

¢è*= y*¢ê

¢w¢w¢w>>>>¢w¢w¢w¢w

¢ço = y¢ê

s.t.

y*¢Ï - C  >= 0

y*      >= 0

¥h±¼ *¡A§ï ¢è ¬° ¢ço

±`¼Æ¶µ²¾¦Ü rhs

¢w¢w¢w>>>>¢w¢w¢w¢w

s.t.

y¢Ï >= C

y  >= 0

 

¦¹¬°­ìÃD°¸ÃDÃö«Y¤§¥Ñ¨Ó

 

 

---