CHAPTER3
HEAT TRANSFER BASICS |

3-1. Intreduction

Building environment analysis and design must be based on understanding the
three modes of heat transfer: conduction, convection, and radiation. Each of the
three can be present independently, but usually at least two, and frequently all
three, are present simultaneously and contribute sxgmfxcantly to determining
environmental conditions lnSldC bu11d1ngs :

Heat transfer mechamsms 1n\_1_olzggﬁl‘1_gsg/c@nggs will ggt_,g discussed now.
They occur frequently in environmental situations, especially related to changes
of thermal energy between animals and their environment, and we will return
briefly to them later. . T

Heat transfer differs from thermodynamics in a fundamental way, even though
the two topics appear similar. Classical thermodynamics is based on the concept
of equilibrium, or infinitesimal deviations from equilibrium. Heat transfer arises
only from non-equilibrium, specifically, from finite differences of temperature.

Heat transfer may be steady state, where temperatures and heat fluxes do not
change as functions of time. Heat transfer may be steady-periodic, where

~conditions change with time in a regular fashion and perfodically return to their
starting conditions (as in response to daily cycles of outside conditions). Heat
transfer may be strictly transient with neither steady-penodlc nor steady-state
assumptions adequate to represent the process. :

Recent research has applied transient heat transfer analysis to the design of
environmental control methods for large, thermally massive buildings, but for
most engineering designs of agricultural buildings, steady-state analysis is

- adequate at least as a close approx1mat10n This text will focus on steady-state
analysis.

3-1.1. 'Thermal Conduction. Thermal conduction is diffusion of thermal |
_energy through a continuous, frequently stationary medium, and degegd_s‘o\z/
properties of that medium. For example, the loss of heat from the indoor surfa¢
of a bullm to- the outdoor surface is by conduction if the wall is

solid. .

In a kinetic sense, conductlon heat transfer is often v1ewed as a cascading
transfer of energy of motion among partlcles on an atomic level. Atoms at
higher temperatures are believed to possess more kinetic energy than those at
lower temperatures, energy which is transferred to less active neighbors through
-elastic collision in a fluid, of oscillattons of atoms and transport of free '

electrong in a nlid matrix. Heat trancfer hv condnction ic alwave from recinng
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of higher temperatures to regions of lower temperatures; the second law of
thermodynamics would be violated otherwise. - - | |

Thermal conduction is the only means of heat transfer through solid, opaque
objects. Conduction can also occur in fluids, but dominates overall heat transfer
‘in fluids only in laminar flow, and in the laminar sublayer of the turbulent
‘boundary layer adjacent to solid objects. :

3-1.2. Thermal Convection. Thermal convection is a process involving fluids.
The term refers loosely either to thermal energy transfer from place to place ,
within a fluid, or between a fluid and a solid surface. In this text, the term i
c ctive heat transfer will be used to denote transfer of thermal energy
X ‘between a fluid and a solid. The term conv. will be used to denote
™ A ransport of thermal energy through fluids by large scale eddying motions. For
&’\%8& example, a dairy cow loses heat to the surrounding air, and the heat may be
eventually lost to the outdoors by conduction through the building’s wall.
Transfer of the heat from the cow’s pelt to her surrounding air is by convective
heat transfer, transfer through the air from the vicinity of the cow to the vicinity
of the wall is by convection, and transfer from the air to the wall surface is by
convective heat transfer. e

The mechanism of thermal convection which is most important in determining
building environment is convective heat transfer. The transfer process involves
the boundary layer. In turbulent fluid flow, eddies in the main part of the flow
exchange thermal energy between the boundary layer and surrounding fluid,
and penetrate within the outer regions of the boundary layer. See Figure 3-1; a
‘turbulent boundary layer is sketched. Within the laminar sublayer of the
turbulent boundary layer, thermal energy exchange reduces to thermal
conduction. Ultimately, all convection between fluids and solid objects is
Timited by the conduction process. As fluid velocity increases and the laminar
sublayer thins, the region of conduction shrinks, turbulent eddies push farther
into the boundary layer, and convective heat transfer is enhanced. | '

Thermal convection and convective heat transfer are classified in two ways. If a
fan or pump causes fluid motion, the process is termed “forced convection”. If
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fluid motion is induced by density differences within the fluid, usually caused
by temperature differences, the process is termed “natural convection”, or “free
convection”.

3-1.3. Thermal Radiation. Thermal radiation differs markedIy from both
conductive and convective heat transfer processes. While conduction and
convection require the presence of matter, thermal radiation heat transfer

requtres the absence of an intervening absorbing medlum
—

w .
Radiation heat transfer occurs when electromagnetic energy leaves one object
and is intercepted and absorbed by another. All objects at temperatures above
absolute zero emit thermal radiation, thus radiation heat transfer is an exchange
‘process. Objects at high temperatures emit more electromagnetic radiation than
fhose at low temperatures; the overall process between two objects is a net
transfer of thermal energy from objects at higher, temperatures to those at lower
temperatures. When thermal radiation leaves an object, the energy content of
that object is lessened, and the object exhibits a lower temperature. The
converse occurs when an object absorbs thermal radiation.

The wavelength of electromagnetic radiation traditionally considered to be
involved in radiation heat transfer is the infrared band. See Figure 3-2. The
lower limit of infrared radiation is at the upper limit of the visible light range,
approximately 0.8 microns wavelengt he-upper limit of thermal radiation is
less well defined, but extend S, a wavelength which typifies
thermal radiation emitted by Obje earth temperature However thermal -
‘radiation exchange is not limited to these wavelength bands. “Visible light and
ultraviolet radiation from the sun, for examples, are electromagnetlc radlatron
-~ and, W(Ken absorb\g) are converted to thermal energy. o '

© 3-2. Conduction Heat Transfer

c’s\@a V“" R

3-2.1. The Heat Conduction Equation. The heat conduction equation for
isotropic solids is derived in most heat transfer texts. One form is

72t+qgeﬁlk=(a)-18t/51, G-
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Figure 3-2. The electromagnetip radiation band'.
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where t is temperature, qgén is the rate of internal heat generation, W/m3; k is
thermal conductivity, W/mK; o is thermal diffusivity, s/m2; and T is time, s.

1] con ivity is an intensive property of material which is a
proportionality constant relating heat flux by conduction, and the temperature

~gradient,

k=-q"/(dt/dn) )

" where n is the direction of the positive temperature gradient. Heat flux, 7, is
thermal energy transferred per unit area per unit time (W/m?2, for example).

Thermal conductivity values for real materials are determined empirically.
Thermal conductivity may be a function of time, temperature, moisture content,

direction, or location, However, for most applications in environmental engi-
" neering, it is adequate to assume thermal conductivity is a relatively constant

scalar. The negative sign is introduced in Equation 3-2 so a positive heat flux
corresponds to a negative temperature gradient. Heat always flows “downhill”.

In the SI system, units for thermal conductivity are W/mK. To follow
convention, temperature units in thermal conductivity, and other parameters to
follow, will be expressed in K when a temperature difference is represented and
C for actual temperature. Each degree difference in K is equivalent to a degree
difference in C. ' v ' ‘

Appendix Tables A3-1 and A3-2 contain thermal conductivity data for common
engineering materials. vih)?; SR o

Thermal diffusivity is a cbmbination of thermal pafameters,

1250987
a=k/pc, = = , 3-3
P s, BALEL A -3

where p is mass density and ¢y is specific heat. Thermal diffusivity is a measure
of how rapidly thermal energy can penetrate a solid material and is important in
time-dependent heat conduction problems. ’

The Laplacian, V2t, for one-dimensional heat transfer is

2 o m = 0 cartesian :
Vi=L A fa" m = | cylindrical (3-4)
n @0 1) m =2 spherical '

Many engineering problems can be analyzed using/$1 wplified forms of the heat
conduction equation. If there is no source term, thé\Foun r equation is obtained

) B .
) Vi=(a) 8t/d1, - (3-5)
which applies to time-dependent, conduction heat transfer problems.

If conduction_is steady-state, but a uniformly distributeéd heat source is present,
th§/§01sson e/quation is obtained

*
e .
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Vt+qgen/k o o (3-6)

This situation can arise, for example when solar energy is absorbed within the
glass or plastic glazmg ona greenhouse :

If conduction is steady-state and there are no internal, uniformly distributed

heat sources, the/L/apme equation results
-’——;E‘\

2
Vi=0. -7

The Laplace equation applies to most thermal energy exchanges by conduction
in agricultural buildings. Although ambient conditions are, in reality, always
time-dependent, agricultural buildings are usually sufficiently lightweight in a
thermal sense that steady-state (or step-wise steady-state) conditions may be
- assumed.

One way to estimate whether a building is lightweight in a thermal sense is to
consider how rapidly the building might respond to a sudden change of outdoor
temperature. Air temperature in a ventilated barn, for example, would be
expected to follow outdoor temperature with a lag of less than 1 hr. The same
could be expected for temperature changes of other components of the barn
such as the walls. Compare this to the period of the diurnal cycle of outdoor

temperature which is 24 hrs. The response time of the barn is much less than the

he temperature changes, thus, the barn may be considered
thermally hghtwelght and eady-state analysis 1d be suitable as an
approximation of actual conduction heat transfer process. (Thermal lag is
associated with the conduction process; radiation heat transfer is nearly
1nstantaneous and convective heat transfer occurs within seconds.) As a rough -
‘rule,if the. maxrmum air: temperature within a- buﬂdmg is reached within 2 hrs
of the: max1mum outs1de temperature, the bulldmg may be classed as a
' hghtwelght structure.

3-2.2. Temperature Fields. If two boundary conditions for Equation 3-7 are
- known, the equation can be solved to determine the temperature field. Example

'3-1 shows the solution of Equation 3-7 for one-dimensional heat transfer by
.conduction through a planar solid, a situation resembling heat loss through a
homogeneous wall of a building.

Example 3-1
Problem: Determine the temperature field within a homogeneous wall of
thickness, L, when the temperature at one boundary is t;, and the temperature at

the other boundary is t,.

Solution: This example can be considered a case of one-dimensional heat
transfer in cartesian coordinates and Equation 3-7 reduces to

<o)



&t/ dx’ =0, (39
which can be integrated twice to yield |
t=C; X +Cyp. ' (3-9)
For 0 < x < L the temperature field is |
| t=t, + (1, - 1) (x/L). (3-10)

Equation 3-10 represents a temperature field linear in distance for the situation
of steady-state heat transfer in one dimension in a homogeneous solid with no
internal heat sources. Other coordinate systems do not necessarily yield
temperature profiles linear in distance. '

t t
1
—p 2
X
—
— L
'(1 temperature
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" Conduction heat transfer through cylindrical walls can also be important in
building environment analysis and design. For example, a forced hot air furnace
may be used to heat a nursery for young animals or a greenhouse. If a duct to
" carry heated air is round, and is insulated so the wall is thick relative to the duct
diameter, conduction heat transfer in cylindrical coordinates must be
considered. Example 3-2 demonstrates the solution of such a'situation, and a
derivation of the expression for temperature in one-dimensional cylindrical .
coordinates. Heat conduction through insulation on water pipes almost always.
must be analyzed in cylindrical coordinates. -

Exampie 3-2

- Problem: Determine the temperature field within a homogeneous cylindrical
shell of inner radius r; and outer radius 1o when the temperature of the inner
surface is t; and the temperature of the outer surface is t,. Assume steady state
conditions. | ' |

Solution: Equation 3-7 applies again in fhe form

2
L4 e 9._2-+.}_£=0, 3-11)
; 4 dr d

ood



5
%
b

example

t i temperature
. profile -
t _ i

o]

r. r ;
i [} :

~ which can be solved readily by substituting S = dt/dr. :Thi_S'reduces_Equatiori 3-

11to
dS ;S (3-12) °
- . dr T : -
If Equation 3-12 is multiplied by rdr, it becomes
vrdS+Sdr=0, (3-13)
which is, by definition, '
d@S) =0. (3-14)

Equation 3-14 can be integrated once to

;X Yﬁ&@ , 1S=¢; - o (3-15)

and a second time to

t=c;lnr+c,. , (3-16)

Applying the boundary conditions leads to
t=clnrg+cy,and 617
t, =c,Inr, +c,. | (3-18)

The constants of integration are determined using Equations 3-17 and 3-18, and
the temperature field can be expressed as
-
Vel =

% .
to - B
t ﬁr:ra\ R Inte
N N ,
Equation 3-19 shows temperature—'n{ this steady state case is not linear in
distance, but rather shows a logarithmic increase (or decrease, depending on the
boundary conditions). Linearity would not be expected intuitively, of course,
because the cross-sectional area of heat transfer is a function of radius, thus the
temperature gradient must also be a function of radius for steady state heat

transfer to occur.

N\ ,
tlnr, - t Inr; (3-19)
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3-2.3. Conduction Heat Transfer. Thermal flux due to conduction heat
transfer can be determined by

qQ”"=-kdt/dn, | (3-20)

in a restatement of Equation 3-2 where dt/dn is the temperature gradient and q”
is heat flux by conduction. Equation 3-20 expresses the Fourier law of heat

conduction. When_integrated over the area of heat flow (area normal to the

direction of ﬂuyg heat flux becomes heat flow (watts, for example).

Vs
Under steady state condltlons Equation 3-20 may be mtegrated along the path
and over the area of heat flow to yield heat flow, q

q=kAAt/L; At=1, - t, - (3-21)

Equation 3-21 is frequently rearranged and the terms k/L grouped into a single
term, U, the unit area thermal conductance,

q=UAAt U=k /L. (3-22)

Thermal conductance is an extensive property, whereas, thermal conductivity is
va‘/\/\_,—\/

intensive.
e e N

A final rearrangement is frequently made for convenience. The inverse of unit
area thermal conductance, termed unit area thermal resistance R is used in a ;
restatement of Equation 3-22,

| ot |
q=AAt/R;R=L/k.= T; (3-23)
Example 3-3 is a calculation of heat transfer through a single layer wall in

cartesian coordinates, Example 3-4 provides a similar calculation for cylindrical
coordinates.

= Wi

S ;ﬁ% jﬁ , i}"ézd
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Example 3-3

Problem: A wall has been built of concrete and is 200 mm thick with a cross-
sectional area of 10 m2. The temperature of one face is 20 C, the temperature of
the other is - 10 C. Assume thermal conductivity of concrete is 0. 56 W/mK

Determme the temperature fleld and estimate the rate of conductlon heat

transfer through the wall.
L 20C

10 m?

area

k = 0.56 W/mK

heat flow

56



Solution: The temperature field is independent of thermal properties for one-
dimensional, steady-state heat transfer by conduction, and properties are
uniform and isotropic. Thus Equation 3-10 applies, where 4=-10C,t,=20C
and x =0 where t =- 10 C. o -
t=-10+(20- (-10)(x/0.2) t=tt(t-5) (%] )
=-10+150 (xinm;@)
and by Equation 3-23, |

R=L/k=02/056 |
=0.357 ﬁzﬁLﬁv\ >
q=AA/R=TI0)(30) /0357

= 840 W.

Example 3-4

. Problem: A circular sheet metal duct carries refrigerated air to a cold storage
room for apples. The duct itself is 250 mm in diameter (outside), and is covered
with a 50 mm layer of insulation, making the outer diameter of the insulated
duct 350 mm. The duct wall thickness is 1 mm.

- The inner surface temperature of the ducit_ is O C, and the outer surface
- temperature of the insulation is 25 C. Thermal conductivity of sheet metal is 60
- W/mK, and of the insulation is 0.04 W/mK.

Calculate the rate of conduction heat gain through the insulation per meter
length of the duct. Assume steady-state conditions.

k = 60 W/mK
duct

350 mm 2506 mm
i = 0.04 W/mK

insulation

Solution: In cylindrical coordinates, thermal resistance to conductive heat
-transfer is '

Y
. e
& oy H 3T\ Ine, /) aie
| _— R="TL/T & 3.24
4L = 2mkL e G-24)

where L is the length of the cylinder, and 1, and r; are the outer and inner radii,
respectively. It can be a useful exercise to develop this expression using the
Fourier law of heat conduction, the definition of heat transfer using the
resistance analogy (Equation 3-23), and the equation for the temperature field in
cylindrical coordinates (Equation 3-19). -




Note that Equation 3-24 presents thermal resistance differently than is the
typical case for cartesian coordinates. For the cylinder, resistance is total
thermal resistance for the cylindrical wall, not unit area or unit length thermal
resistance (unless L = 1). This is an important distinction which will be
emphasized later. :

This example is to calculate heat gain per meter of duct, thus, Lis 1 min
Equation 3-24, k is 0.04 W/mK for the insulation, and 1, and r; are 175 and 125
mm, respectively. For now, consider just the insulation layer; it is likely to be
the limiting resistance along the path of heat transfer. The duct wall itself will
have relatively little resistance.

The resistance of{one meter length of insulatio

R= 1n(175/125)/(2n)(0.04)(1.0) =1.34 éM
and the heat gain per unit length is -

q=AtR = (25 K)/(1.34 mK/W) = 18.7 W/m.

3.2.4 Resistances in Series. If total resistance, R’, is considered instead of
unit area thermal resistance, conduction heat transfer in steady state through
more complex geometries resembles electrical current flow through an electrical
circuit of resistors, and | | '

current = difference in potential/total resistance or

q=At/R. ] - (3-25)
electrical resistors in serieg
F{1 R2

R=R1+R2

The electrical analogy is useful for realistic conduction heat transfer problems;
standard electrical circuit equations can be used to simplify thermal circuits. In
an electrical circuit with resistors in series, the total resistance of the circuit
equals the sum of the individual resistances,

R’ = ZR; jividual’ - (3-26)

A typical wood frame wall in a building has several layers. There'is inside
sheathing, a wall cavity filled with insulation, exterior sheathing, and siding. It
is likely no two layers are made of the same material, and each is a different
thickness.
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Conduction heat transfer is through each of the layers in series. This is a series
thermal circuit and the total resistance of the wall equals the sum of resistances
of the layers. A typical calculation is in Example 3-5.

‘Example 3-5

; Problem: A _-wall is constructed as Shown in Figure 3-3. Calculate the unit area
. thermal resistance of the wall section, and the heat flux which would result if
one side of the wall were held at 20 C and the other at- 5 C. '

Solution: This is a series thermal circuit; Equation 3-26 can be used to |
-determine the total unit area thermal resistance of the wall, and Equation 3-25
can then be used to determine thermal flux. The first step is to calculate the unit

‘area thermal resistance of each layer: N
_ Rl .=‘ Li/k; = (0.020m)/(0.25W/mK) = 0.08 m2K/W, ;
| Ry= Lyk,= (0. 100m)/(0. 15W/mK) = 0.67 m2K/W, /s £ A
R3= Lj/k;= (0.030m)/(0.20W/mK) = 0. 15 m2K/W. o . %
E : 21 .
The total unit area thermal resistance is
(=] ;
‘ (= aty
. & R
R"= 0.08 +0.67 +0.15=0.90 m2K/W. o
o)
The heat flux is A T

9" = At/R"=(20C- (- 5 C))/0.90 mZK/W = 27.8 W/m2.

wall layers
1 -2 3 .
N .
—— L =20 mm, k = 0.25 W/mK

L =100 mm, k = 0.15 w/mK

Il
N\
—— L = 30 mm, k = 0.20 W/mK




At this point it would be a useful exercise to return to Example 3-4, calculate
the thermal resistance of the sheet metal duct wall, compare that value to the
resistance of the insulation and sheet metal in series, and judge whether it was a
reasonable assumption to neglect the effect of the duct wall on heat gain into the

duct.

3.2.5. Resistances in Parallel. When electrical resistors are in parallel, the
total resistance, R”, is found by the inverse rule,

1/R" =2 (1/ Rypgiviua)- (3-27)

thermal circuit in parallel

A R
R, T A NN
R
Rz 2
vV V' Vv A,
ivalent circuit equivalent circuit
VRV V

1R = 1R_+ 1R
! 2 (A, +A)R=A R +AIR,

A typical building has numerous heat loss paths operating in parallel. Heat

transfer through the walls, windows, ceiling, doors, and floor are heat transfer

paths in parallel. Each path bridges the same temperature difference — indoor air

temperature to outdoor air temperature. '

Note: When the electrical analogy is applied to heat transfer paths in parallel,
the resistances used in Equation 3-27 must be the total resistances of each path
not the unit area resistances. The parallel heat transfer resistance relationship is
normally stated as

Atoral [ R" =Z (Ajpgividual / Rinc}ividual) (3-28)

where A is the sum of areas of the heat loss paths,

A =X A

total — individual®

(3-28a)

and R, gividua i the unit area thermal resistance of each path. In Equation 3-28,
R is the unit area thermal resistance averaged over all heat transfer paths.
Example 3-6 demonstrates an application of parallel heat transfer calculations.

Example 3-6

Problem: A wood-framed wall in a building (see Figure 3-4) is well insulated.
However, framing occupies 20% of the wall area, and framing does not have the
insulative effect of insulation. '

—n



Heat loss through such a wall is a situation of conductive heat transfer paths in
parallel. One path of heat loss is through the framed part of the wall, the other
path is through the msulated part. For this example, the framed part of the wall

has a unit area t ance of 2.3 m?K/W, and the insulated part has a

unit area thermal resistance of 4.1 m2K/W.

If the wall is 3 m high and 10 m long, what is the average unit area thermal
resistance of the wall, and what will be the heat loss through the wall when it is
20 C indoors and - 5 C outdoors?

Solution: Equation 3-28 is used to calculate the average unit area thermal
resistance. There are two paths of heat loss. The total area of heat loss is 30 m?
(3 m x 10 m). Framing occupies 20% of the wall, a heat loss area of 6 m?2
(0. 20% of 30 m#). The insulated part of the wall is the rest, 24 m?2. Equation 3-
28 becomes

30 m2/ R'=(6m?/2.3 mzK/W) + (24 m?/4.1 m2K/W)
: The average unit area thermal resistance is
R'=355 m2K/W.
| The heat loss through the wall can be calculated using Equanon 3-23,

(30 m?2) (20C-(-5 C)) /3.55 m2K/W
=212 W..
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Note the influence of a small area of relatively low unit area thermal resistance.
The insulated wall section unit area thermal resistance of 4.1 m?K/W is reduced
more than 13% to 3.55 m*K/W by framing which comprises only 20% of the
wall. . : .

-

Examples 3.5 and 3-6 have demonstrated calculations for heat flow paths in
series and parallel. In real situations, both calculations are required. A strategy
to approach such problems, in a cartesian coordinate system, is first to examine
each series heat flow path, calculate its unit area thermal resistance, and then
complete the calculation for all the parallel paths. For example, in a building
with walls, ceiling, doors, and windows, the areas of each path and the unit area
thermal resistance of each path are calculated first. Then the average unit area
thermal resistance and total heat loss are calculated. In cylindrical coordinate
systems, total thermal resistance must be used rather than unit area thermal
resistances. Modifications of this strategy work, also, but should be attempted
only after this straight forward sequence is well understood.

Data to calculate conduction heat transfer exist in two forms. In many
engineering applications, thermal conductivity values are used along with
Equation 3-21. However, in buildings, many materials are used in standard
modules and unit area thermal resistances (R-values) of the modules appear in

- standard tables. Appendix Table A3-2 contains such a collection of mixed data.

Where a material is not used in standard thickness (e.g., concrete) resistance per

" meter thickness is presented. Where a standard module thickness is typical, the
" R-value of that module is listed. ' :

. The R-value of a desiréd thickness of material for which an R-value per meter

is given can be obtained by scaling the unit thickness R-value. For example,
concrete with sand and gravel aggregate, not oven dried, has an R-value of 0.56
m2K/W per m thickness. A wall 0.2 m thick would, therefore, have an R-value
of 0.112 m2K/W (20% of 0.56 m2K/W). This calculation, in effect, invokes the
concept of resistances in series. ‘ :

On the other hand, the R-value for Douglas fir plywood, 15.88 mm thick, is -

"given directly as 0.145 m2K/W. However, if a thickness of material is to be

used that is not listed in the table, for example, 10 mm thick Douglas fir
plywood, its R-value can be estimated by scaling from given data. The data
state 15.88 mm of the plywood has an R-value of 0.145 m2K/W, thus, 10 mm
must have an R-value of 0.091 m2K/W (= (10 / 15.88) (0. 145m?K/W)) . .

'Rounding differences may givé slightly different values depending on which

database one starts with. If a range of values is given, the midpoint should be
used unless manufacturer’s data suggest otherwise.



3-3. Convective Heat Transfer

3-3.1. Natural Convectiop. Convective heat transfer occurs due to a
temperature difference between a solid object and its surrounding fluid. In
natural convection, fluid moves because of density differences caused by
temperature, humidity, or other air constituent gradients. Many engineering
studies have been presented which provide empirical correlations between
convective heat transfer rates and various thermal and geometric properties of
the fluid and solid object. :

As an example of natural convection, consider the air duct described in
Example 3-4. Cold air within the duct causes the exterior of the duct to be
colder than the surrounding room air (if the duct is inside a heated space). Air in
the vicinity of the duct cools because of contact with the duct surface, becomes
slightly more dense than the surrounding air, and begins to fall. When the cooler
air falls away from the duct, it is replaced by room air which is still warm. That
air cools, falls, and the cycle is repeated as long as the temperature difference
between the air and duct is maintained. - *

DW&S enhance fluid movement, viscosity retards it. Fluid
properties which influence the rate of convective heat transfer are: thermal
conductivity, the coefficient of z_thermal expansion, viscosity, density, and
specific heat. The gravitational constant, g, as well as the size and shape of the

' solid object involved in the heat exchange also j nce the rate of convective
heat transfer. = ' ' .

| dimensionless numbers are important.
The ﬁrst is ihe Nusselt numbberz Nu, calculated_as ll'\}
.~ Nu=hL/k, -

‘where L_js a characteristic dimension of the solid object involved, k is the
thermal conductivity of the fluid, and h is the coefficient of convective heat
transfer, also called a film coefficient or a surface coefficient. The characteristic

(3-29)

The coefficient, h, is a conductance defined as the flux of heat transfequd
convectively divided by the temperature difference between the fluid and solid,

h=q”/At, orh=(q /At (3.2M




where q is total heat transferred over an area, A, between a solid object and a
fluid due to a temperature difference, At.

If the Nusselt number can be determined, convective heat transfer can be
quantitatively predicted. % L I3 i& ; ¢ 7 T

The second dimensionless member, the Prandtl number, Pr, expresses the ratio

of the diffusion of momentum to the diffusion of heat from a solid surface

through a boundary layer into a surrounding fluid. It is calfu}zfgj— ss e
AT A=

Pr=pcp/k - ?‘\\ K 4 (0( ’(3-31)&

where, | is the dynamic viscosity of air, ¢ is its specific heat, and k is its
thermal conductivity. Example air properties, and the corresponding Prandtl
numbers as functions of temperature, are in Table 3-1.

T e T

The third dimensionless ratio, important in ngmmnmixg_hgat.im_n_sier, is
the_Grashof number, Gr. This ratio can be interpreted as the ratio of buoyancy
forces to viscous drag forces within the fluid,

Gr=gp BLAL/1, | (3-32)

where B is the coefficient of thermal expansion, g is the gravitational constant,
and other terms are as previously defined.

In general, natural convective heat transfer processes have been found to follow
the relationship :

Nu = ¢(GrPr) . o (3-33)

Convective heat transfer mirrors fluid mechanics, where there is a laminar
domain, a fully turbulent domain, and between laminarity ‘and turbulence is a
domain of mixed laminar and turbulent flow. The coefficient and exponent in
'Equation 3-33 depend on the fluid flow domain. When flow is laminar, n =

. &

0.33. When flow is turbulent, n = 0.25. When flow is in the transition region
between laminar and turbulent, n is between 0.33 and 0.25. In this text only
laminar and turbulent flow will be considered, and the transition range will not
be covered. -

Table 3-1. Properties of dry air at standard atmospheric pressure, 101.325 kPa.

Temperature, K -, kg/ms  k, W/mK Pr- P kg/m3 cp, kI/kgK ﬁz
200 1.329E-5 0.01809 0.739 1.7684 1.0061
250 1.488E-5 0.02227 0.722 1.4128 1.0053
300 1.983E-5  0.02624  0.708 1.1774 1.0057
350 2.075E-5 0.03003 0.697 0.9980 1.0090
400 2.286E-5  0.03365 0.689 0.8826 1.0140 -

(Adapted from Sucec, 1985.)

'
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for example. Table 3-2 contains equatio nvection useful in
environmental control applications, for dry air at standard atmospheric pressure |
and 20 C, and have been adapted from the ASHRAE Handbook of
. Fundamentals. . ' . .

The determination whether flow is laminar or turbulent is based on the GrPr
product. Laminar range €quations apply for QrP[r between 104 and 108, and the
turbul uations apply for GrPr between &-/ngand 102, For standard air
“conditions, GrPr can be approximated by '

GrPr =@L3At, - (3-34)
’V\/‘j 5‘

- where L is in meters and At in K. 1~ (s

Examples 3-7, 3-8, and 3-9 demonstrate uses of convective heat transfer
calculations. The examples apply to air ducts and pipes. Convective heat
transfer to and from walls of buildings is treated differently, as we will see later
in the text. | '

b Ay F 4B KR, e

Table 3-2. Natural convention heat transfer coefficients.

%E o -, Vertical plates
laminar range h= 1.42(At/L)0'25 (3-35)
turbulentrange b = 1.31(ap0-33 (3-36)

K21 &) v 83A , Horizontal plates facing upward when cooled or downward when
K%;ﬁ :5 ’g’ 2 heated (always laminar convective heat transfer)

It & ' '
HE %’f?;'i: h= O.59(At/L)0'25 (3-37)

%;{{ -§rﬂ k lg\%fl‘ ( Horizontal plates facing upward when heated or downward whe»n‘

- cooled
Hign laminar range h = 1.32(A¢1)0-25 (3-38)

trbulentrange  h = 1.52(An0-33 (3-39)

- Horizontal cylinders .
laminar range h = 1.32(ayL)0-25 (3-40)
turbulentrange = 1.24(a)0-33 (3-41)

E

- ﬁ % Vertical cylinders can be treated as vertical plates,

(AtinK, L in m, and h in W/m2K)




Example 3-7

Problem: Consider a horizontal heating pipe for a greenhouse. The pipe carri
warm water and releases heat into the greenhouse air by convective he
transfer. The outside diameter of the pipe is 50 mm, and its surface temperatu
is 80 C. The greenhouse air temperature is 20 C. What will be the surfa
_ convective heat transfer coefficient, and what will be the rate of convective he

loss from the pipe?

/\ ‘

20 C

P(SO mm diameter
< 80 C

Solution: The pipe can be considered a horizontal cylinder (no fins on the [
were mentioned). However, to know which of the equations in Table 3-2 to 1
we must determine whether the convection will be laminar or turbulent. F1
- Equation 3-34, :

GePr = 108(0.050 m)>(80 C-20C)
= 075E+6

which is within the Taminar range. The convective heat transfer coefficient
thus be calculated as (using Equation 3-40)

h = 1.32(60K/0.050 m)025 |
= 7.8 Wm?K. ' -
R N O N
The rate of heat loss can be determined by rearranging Equation 3-3
follows: - B

.q” = hAt | (q
= (7.8 W/m K)(60 K) = 470 W/m’.

Heat loss from pipes is often expressed per unit length of pipe rather thar

area. Each meter of pipe length corresponds to

W
{

A =27l = 7(0.050 m)(1,0 m) = 0.157 m? o,
thus, S
q = (470 W/m2 K)(0.157 m2/m) = 74 W/m.

(This has been a calculation based on basic considerations of convectiv
transfer. It should be noted that heat losses from greenhouse heating pip
usually calcilated based on data provided by manufacturers of heating sy

+ X N



- data which have been obtained from experiments, which apply to the specific

arrangement of pipes being considered in a design, and which include both

convective and radiative heat transfer.) -
i e NI I T W :

N

Example 3-8

Problem: Consider a horizontal sheet metal duct which carries heated air from a
furnace to a heated space. The outside diameter of the duct is 0.5 m, and its
outside surface temperature is 80 C. The air temperature in the space through
which the duct passes is 20 C. What will be the surface convective heat transfer
coefficient and the rate of heat loss by convection from the duct?

— __“Fg:; 7‘;“‘
2” f’?/e‘fg air at 20 C
Q. ) :
7 @ p I furnace 0.5 m diameter duct
’ i L A LE ] ;
» o beated space
oo .\80 c/

Solution: This example is similar to Example 3-7, only the dimensions have .

changed. Again, first check to determine whether laminar or turbulent

conditions apply,

GriPr = 108(0.5 m)3(80 C- 20 C)
' = 3.0E+9, .

‘Wwhich is in the turbulent range. The convective heat transfer coefficient can,

thus, be calculated by VST R sy

h = 1.24(60 K)0-33
= 479 W/m?K.
"W\/W

The rate of convective heat transfer can be calculated as in Equation 3-42,

q" = (4.79 W/m2K) (60 K) ]7: -4 r
= 287 W/m2. Y

Each meter of duct has a surfaée area of
A = 1(0.5m)(LOm) = 1.57 m2,
thus, the heat loss by convection is
q = (287 W/m?)(1.57 m¥m) = 451 W/m.

Compare this example to Example 3-7. Airflow has changedA from laminar to

turbulent, but the convective heat transfer cb_e,fﬁgjent has decreased. It is not
—_— Ik )
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necessarily true that the average (which is what we have calculated) convective
heat transfer coefficient will increase with the onset of turbulence, if the
turbulence is caused simply by having a larger solid object. Of course, the much
larger size of the air duct leads to a significantly larger rate of heat'loss per
meter length if not per unit area of duct. '

Example 359 . \)K/QUU"”(’O’ 0

Problem: A hot water pipe is insulated to prevent heat loss from hot water as it
flows between the water heater and the point of use.

The pipe’s outside diameter is 100 mm, the insulation thickness is 50 mm, the
pipe temperature is essentially that of the hot water, 90 C, and air temperature

 surrounding the pipe is 10 C.

The thermal conductivity of the insulation on the pipe is 0.05 W/mK.

Calculate the heat flux from the surface of the insulation, and the heat loss per
meter of pipe.

airat 10 C

g k = 0.05 W/mK
water at 90 C

surface

90 C 10C
= R =7
insulation . surface
1.39 m 2 KW

Solution: Inherent in this problem are assumptions that: (a) the pipe wall does
not contribute a significant thermal resistance to the path of heat loss from the
water to the ambient air, (b) there is little thermal resistance due to the
convective heat transfer process from the water to the inside surface of the pipe,
and (c) contact between the pipe and insulation is sufficiently good that there is
little contact thermal resistance.

Checking the first assumption is an exercise left for practice. Hint: Use the
thermal resistance equations for cylindrical coordinates. Convective resistances
from water to a surface are approximately two orders of magnitude less than
from air to a surface. Thus, in this problem, the second assumption is
reasonable. The third assumption must be based on knowledge of how the
insulation will be applied to the pipe; we will assume it will be wrapped tightly
and taped. ‘

6% ‘ | | ‘



This problem can be viewed as a thermal circuit with two resistances in series —
the insulation, and the convective heat transfer resistance between the surface of
the insulation and the air (a surface resistance). The resistance of the insulation
can bel calculated using Equation 3-24 - 799

| Y Yz |
Rinsutation = (n(0.10 m /0.05 m))/(2 ©)(0.05 W/mK)(1.0 m)
' = 2.21 m K/W

Recall this thermal resistance is based on a unit length of pipe. Convective
thermal resistance is based on unit area. We must decide which basis to use.
‘Either will work, but for this example use unit area. The convective thermal
resistance is based on the area of the outside of the insulation layer; the
insulation resistance will be based on the same area.

Each meter length of pipe has a surface area of
A = 1(0.20 m)1.0m) = 0.628 mZ2/m

Therefore, the unit aréa thermal resistance (based on the surface aréa)?is
Rinsulation = (2.21 m K/W)(0.628 m?/m) = 1.39 m?K/W.

'The thermal circuit is expressed as an electrical analog, and the surface
resistance can be determined as the inverse of the convective heat transfer
coefficient found using one of the equations in Table 3-2. The question is,
which equation? That depends on whether the flow will be laminar or turbulent,
and that is a function of the insulation surface temperature. But the insulation
surface temperature is a function of the surface resistance. We are in a circle. To
approach such a problem, assume a condition, solve the problem using that
assumption, and then check the assumption. If the assumption is found to have
been incorrect, it is changed and the problem is solved again.

To begin the solution, assume conditions are laminar. An energy balance written
for the outside surface of the insulation is

hsurface(tsurface -106)=090C- tsurface Y/ Rinsulation
With the assumption of laminar airflow,

Boyrtace = 1.32((tsurface - 10 C)/§).2 m)0-25
1.97(tgurface - 10 C)0-25,

The energy balance can be rewritten as
L97(t surface - 100125 = (90 - tgyrface)/1.39.

Although this is a single equation in one unknown, it is nonlinear. A simple
solution technique is to use trial and error, searching for a value of surface




temperature which balances the energy balance. Computers and programmable
calculators are well suited to this type of search.

This equation is sufficiently simple that it is most easily solved using a
calculator. One approach is to rewrite the energy balance as

2.7T4(tsyrface - 10)1'25 + Usurface = 90

~and search for values of surface temperature until one is found such that the left

hand side (LHS) of the equatlon equals 90. Such a search sequence is

tsurface LHS

: 20C 68.7
o Ga T 25 105.9
e 23 90.6

: 229 89.9
22.92 90.0

Considering sighiﬁcant digits, a surface temperature of 23 C is estimated. Now
check the assumption of laminar flow.

GrPr = 103(0.2m)3(23C-10C)
= 1LIE+7

This is within the laminar range; the initial assumption was correct. Several
procedures can now be used to calculate heat flux from the pipe. One way is to
calculate the surface convective thermal resistance, the total thermal resistance,
and the heat flux. |

hyyface = 1.32((23 C-10C)/0.2 m)%23
= 3.75 W/m2K,

and Ryyrface = 1/3.75 W/m2K = 0.267 m?K/W.

The total series resistance is
Rt = 1.39 m2K/W + 0.267 m2K/W = 1.66 m?K/W,

and the heat flux is
q” = (90 C-10C)/1.66 m*K/W =48 W/m?.

Each meter length of pipe has 0.628 m? surface area, thus, heai_ loss per meter is
q = (48 W/m?)(0.628 m?/m) = 30 W/m.

It would be a useful exercise to rework this problem using unit length thermal
resistances rather than unit area thermal resistances.

70
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3-3.2. Forced Convection. Forced convective heat transfer is usually greater
on a unit area basis than is natural convective heat transfer. Fluid motion caused
~ by a fan or pump is normally more rapid than the rate of motion which can be
achieved by thermal buoyancy. As an example of forced convection, air in the
heating duct of Example 3-8 moves because of a fan and exchanges thermal
energy with the duct wall by forced convective heat transfer. Many forced
convection situations are described in heat transfer texts, only a few apply
frequently to environmental control calculations in agricultural buildings.

The convective heat transfer equation for forced convection is the same as for
natural convection, . .

q” =hAt,

~ however, the equations which provide values for h differ from those for natural
convective heat transfer. The Nusselt number and Reynolds number, Re, are the
dimensionless ratios important in forced convective heat transfer. The Reynolds
number can be interpreted as the ratio of momentum forces to W

and expresses the level of turbulence, I G ‘V’/
. B / L
~ A M
Re=pVL/p, /(g (3-43)

- where p is mass density, W is dynamic viscosity, L is a characteristic length, and
V is the averaged velocity of fluid flow, V =%//A. oy
) P Ej@fiﬁﬁm@\d T's —»/3'% }?"c/—‘f

vel '\}Ci—g:y
Environment control applications usually involve air, and forced convective
heat transfer applies to airflow inside ducts, for example. The flow is invariably
turbulent for realistic situations.-Eor airflow inside a duct at standard
atmospheric pressure, the following simplified equation applies,

h=cG> /D% (3-44)

In Equation 3-44, c is a coefficient computed from the thermal properties of air
and is a function of temperature. Table 3-3 can be used to estimate its value.
The parameter G is the mass flow of air in the duct, per unit cross-sectional area
2
of duct, kg/m?s, S
. it lcs
G=pV. = (3-45)

3
12 -

The parameter D is the hydraulic diameter of the duct, m,

D =4(area) / (perimeter).' (3-46)

The hydraulic diameter of a round duct equals its physical diameter. Example 3-
10 illustrates an application of Equation 3-44, and Example 3-11 is an extended
problem which combines forced convective heat transfer and heat conduction.

Generalized correlations, and equatiohs for other fluids and flow situations, can
be found, for example, in the ASHRAE Handbook of Fundamentals.

Y
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Example 3-10

Problem: Air flows through a rectangular heating duct, 0.3 m by 0.6 m. The air
velocity is 5 m/s, air density is 1.3 kg/m3, and air temperature is35C.

What is the convective heat transfer coefficient between the h_éated air and the
duct wall?

air at 35 C, 5 m/s, 1.3 kg/m

Solution: To use Equation 3-44, three parameters are needed. The first is‘ c, and
its value can be obtained by interpolation from Table 3-3. For a temperature Qf
35 C,c=3.23.
The mass flow rate is

G = (1.3 kg/m3)(5 m/s) = 6.5 kg/m?2s,
and the hydraulic diameter is

D =4(0.18 m2)/(1.8 m) =0.4 m.

The convective heat transfer coefficient is

h = (3.23) (6.5 kg/m?s)08/(0.4 m)02
= 17.3 W/m?K.

Table 3-3. Coefficient ¢ in Equation 3-44 (SI units).

Temperature C ¢
-18 3.09
4 3.18
27 ‘ 3.21
49 3.26
71 - 3.32 :
93 . 3.37 !

Adapted from the ASHRAE Handbook of Fundamentals : for

hin W/mZK; Gin kg/m2 s; Dinm. An approximaﬁon of the
data is the equation ¢ = 3.14783 + 0.00240267t.




Example 3-11

Problem: Air is heated in a furnace and distributed to a heated space through a

round sheet metal duct at a volumetric flow rate of 4 m3/s. The duct diameter is
8 m and the outer surface of the duct is covered with 10 mm of expanded
olyurethane having a thermal conductivity of 0.023 W/mK. ,

polyure g ty /m} (ee ,? 3 f?

The duct is 50 m long and passes through an unheated space where air
temperature is 5 C. The surface resistance outside the duct insulation is 0.1
m2K/W and includes both convective and radiation heat transfer. Density of the
heated air is expected to be 0.9 kg/ m3.

If air leaves the furnace at 60 C, what will be its temperature at the end of the 50
m long duct? At what rate will heat be lost from the heated air? -

‘32 R=0.1m KW
' /4:50 m——t [E—
% ' furnace heated
i \t~ 60 C -space
t=?2c |

~ ambient air temperature, 5 C

Solution: The solution of this problem is not simple, but the example can be
solved using only the heat transfer principles covered thus far.

Two steps are required. First, the thermal resistance between air inside the duct
and the air outside must be calculated. Then air temperature change along the
length of the duct must be determined.

The series thermal circuit from inside the duct to outside is

« BOCo—W\,—-J\N\,—/\/\/\,—o 5C

IE}inside Rwall Routside

DY

and Roumde is given as asO 1 m2K/W s vk i I .

TR T e

S . '
&
. . o . .

The unit ‘area convective heat transfer coefficient at the inside surface of the 4
duct may be determined using Equation 3-44. At 60 C, ¢ in Equation 3-44 is ‘
found in Table 3-3 by interpolation, ¢ = 3.29, and

0.8 m, i
(0.9 kg/m3) (4 m3/s)/(1) ( 0.42)
7.16 kg/m2s, and

1l
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h = (3.29) (7.16 kg/m2s)0-8/(0.8 m)©-2
= 16.6 W/m2K.

The unit area convective resistance-is the inverse,

Rigge = 1/16.6 Wm2K
= 0.060 m2K/W.

The third resistance in the series thermal circuit is that of the insulation and duct
wall. It was stated earlier that a sheet metal wall contributes little to the thermal
resistance of an insulated duct, thus,_only the insulation will be considered.

’ 1]
The two -coriv_ective resistances have been calculated on a unit area basis. The
conductive resistance must have the same basis to be comparable, but the
conductive resistance equation (Equation 3-24) is based on length. A unit area

of duct (outside surface area) has a length of

\’\ g ~ /
4 [N

L=h 0/(0 87:) 0. 398 m.
L /8 |
Equation 3-24 is used to calculate the thermal resistance of the wall (1nsu1at1on)
for a duct length of 0.398.m (r0 041 m, )T = 0. 40 m)

| Ryan = (In(0. 41 / 0.40))/(2m) (O. 023) (0.398)
= 0.429 m2K/W. .

e could be anticipated that a calculatmn of thermal resistance of the wall in

cartesian coordinates might be adequate for this example because the insulation

thickness is much less than the radlus of the duct. In fact, R = L/k 0.01 m/ |

- 0.023 W/mK = O 435 m2K/W is very close.)

A second correction (although small in this example) will be made. The outside
surface convective resistance and the wall thermal resistance have been based
on the outside surface area. The convective resistance of the inside surface has
been based on the inside area. The two areas are not equal. Although the
difference in this example is small, it can be significant in other problems.

The correction is v, § < ’f; o 52 o
R; sige(corrected) = (0.060 m2K/W)(0.82 m / 0.80 m)?2
= 0.062 m2K/W.

One would expect this increase intuitively. There is slightly less than a unit area
of surface inside the duct for each unit area outside. The resistance for an area
less than one unit should be greater than the resistance for a unit area, and areas
scale by the square of the ratio of their diameters.

The total resistance of the series thermal circuit is

+
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Riotat = 0.062 +0.429 + 0.10 = 0.591 m2K/W
based on surface_: area outside the insulation.

The next step, to find the temperature change of the air, requires an application
of calculus. The temperature difference between air inside the duct to outside
changes continuously along the length of the duct. A simple heat loss equation
will not apply (unless the change is very slight, a situation we do not know at
this point).

Consider an elemental length of the duct. Heat loss from air as it traverses the
elemental length must equal the transfer of heat through the wall to the outside
air. This simple energy balance can be written in integral equation form, solved,
and used to determine air temperature at any point along the duct.

heat flow .
f Iy
) L PO
g7 b T % AR
air flow l RSN N v
v —
mct mc t ’ - v ¥ . AT
p in dL p out NoveE S vy D
S e e gk om BN
' N vl I A S
heat flow L i

Heat transfer through the wall of the elemental length can be written (Equation
3-23) as N
\

7
/

= AAt/R; A =7DdL = 0.82ndL = 2.58dL. )
q=AM/RA =] <258

We have calculated the unit area thermal resistance, Ryqy #0.591 r;sz/W thus,

Vo q=436(g-50dL. . “E0T L oa e
- 059

This thermal exchange must be balanced by heat loss from the mass of air
flowing through the element, m,
= - MCydty;; m = (0.9 kg/m3) (4 m3/s) = 3.6 kgfs.

The negative sign is introduced so a positive heat loss is associated with a
negative temperature change.

If the specific heat of air within the duct is approximated as 1006 J/kgK, heat
loss can be written as

V. q=-3620dt,. R

Heat loss must equal heat gain, thus,
-2




ezt = o ata
436 (tp - 5) dL = - 3620dty;;.  ~oET AL T o

AN

which can be rearranged and integrated along the 50 m length of the duct i in the

form
o {2E-2

t s
ex'rt' dtair

60C (tair = S)A

P - ’f At é;" e
;,«’{ (f_-i‘ P S -
. 4 — - r AN
and solved as {0 I SO \9:, AL
e 0.0 5477 o fet R
590 C A e §EeY Cepniode
ex1t"' 5 +55 exp( %) Cexil > 75 Jg, K\_ a.04 )

The energy loss equation can be used again to estimate the rate of heat loss
from the air where At is now a temperature change not a temperature dlfference.

'q = mcpAt {{L’ﬁ . 159 )
= (3.6 kg/s)(1006 J/kgK)(60 C - 5770 C) A
10900 W (or H:9°kW). | . ATy

fi625 6 f‘%:‘r: =
(A natural next question is whether the cost of added msulatlon would be
balanced by the value of heat energy saved.)

{
/
I

/
In general terms air temperature in a process such fas this example can be'
calculated from 5 _

t , ? { )
~ C/o
texit = tambient + (trmtlal - ambrent) exp (- A/ {nch> } ks

where tambwnt is ambient air temperature, tlmtral is the temperature of air
entering the duct, A is the surface area of the duct, m is the mass flow rate of air
through the duct, c;, is the specific heat of air, and R is the unit area series -

thermal resistance of the heat transfer path from inside the duct to outside.

Because of the small temperature change of the warm air as it traverses the

duct, we could have avoided the differential equation approach and used a
constant temperature difference of (60 C - 5 C = 55K) to calculate heat loss
from the air. However, it is useful to see the general approach for use in other
applications where temperature changes might be greater.

The simpler approach provides a check on the accuraey of the first approach.
The unit area series thermal resistance is 0.591 m2K/W, and the total area of
heat transfer is 7(0.82 m)(50 m) = 129 m2.

Thus

q = AAt/R =(129 m2)(55 K) /0.591 m2K/W
= 12,000 W

-

‘ -
,
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which is somewhat greater than the first estimate because air has not been
permitted to cool along the length of the duct.

3-4. Radiati_on Heat Transfer

3-4.1. General. As has been stated, all objects at temperatures above absolute
zero emit thermal radiation. Emission is over a wavelength band, as shown in
Figure 3,_—5. The emissive power shown in Figure 3-5, W/micron, is the thermal
energy emitted within each micron waveband. The total emitted thermal energy
is the integral or the area under the curve. Approximately a quarter of the
emitted thermal energy is at wavelengths shorter than the maximum; three-
quarters is at wavelengths above the maximum. As temperature increases, the
peak becomes more sharply defined.

The wavelength for peak emission intensity is found using Wien’s law,
| Ay, =2898/T, (3-47)

where 7\. ax 1S Wavelength in microns and T is the surface temperature, K, of the
emitting object In Figure 3-5, the curve for a temperature of 300 K peaks at a
wavelength of 9.66 microns, for example. Thermal radiation from objects at
earth temperature is loosely referred to as having a wavelength of
approximately 10 microns. It is often termed “long-wave” or “low-temperature”
thermal radiation. The curves in Figure 3-5 show the peak emission of objects
at earth temperature is at approximately 10 microns, but significant emission
occurs well below and well above this wavelength. Solar radiation peaks at 0.6 -
microns which represents an effective emitting temperature of 4800 K.

The radiant fluxes emitted from 6bjects at temperatures shown in Figure 3-5

equal the 1111:3grals of the curves shown, and can be calculated using the
W‘/M

Stephan—Boltzmann relationship,

12

watts/micron

emissive power,

wavelength, mlcrons

Flgure 3-5. Monochromatic emissive power of black bodies at 250, 275, 300, and 325 K.
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q"=0T. , (3-48)

The constant, G, is the Stephan-Boltzmann constant, 5.6697E - 8 W/m2K*,

The intensity with which earth-temperature thermal radiation is emitted is
frequently overlooked. Consider Figure 3-6, in which is graphed thermal flux
emitted according to Equation 3-48. Also graphed is the solar constant, which is
the intensity of direct-normal solar radiation just outside the earth’s atmosphere.
The intensity of direct normal radiation on the earth’s surface is seldom more
than 70% of the solar constant, and then only at high altitudes on very clear, dry
days. One-half the solar constant is more typically received on a sunny day, and
then only at midday. Figure 3-6 demonstrates that, at temperatures frequently
dealt with in building environments (280 to 300 K), the intensity of emitted
thermal radiation is approximately one-third the solar constant and compares to
solar intensity at sea level on all but the clearest days. So why doesn't everyone
freeze to death by loss of thermal radiation? The answer lies in radiation heat
transfer calculations, and the exchange of thermal radiation, not just the loss.

3-4.2. Emitted Thermal Radiation. Equation 3-48 applies to a perfect
"emitter; frequently called a black body. However, no object is a perfect emitter; -
-real substances are characterized by an efficacy. of radiant emission, the
emittance €. Radiant energy flux from real objects is calculated from i

¢ =eGT. (3-49)

~_Emittance values are normally a function of wavelength. That is, an object will

radiate thermal energy with a different efficacy at one temperature than at
‘another. If emittance is not a function of wavelength, the object is termed a gray

- _body. Emittance does not change rapidly as a function of wavelength, thus gray

body radiation is assumed to apply in environmental control calculations

involving thermal radiation, i.e., calculations over a relatively narrow
-waveband. ' '

solar constant

_~
)
T

approximate range of maximum ‘solar
insolation at the .earth’s surface

0.5

radiation, kW/m 2

200 250 300 350 400

temperature, K

Figure 3-6. Thermal radiation emitted from a black body as a function of its temperature.
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It should be emphasized that thermal radiation is a phenomenon determined by

_the surfaces of objects. Radiation properties of an object are determined by its

surface to a depth of only several wavelengths of the radiation involved. As a
consequence, thermal radiation properties of a surface can be changed by
simply painting over it. Thermal radiation emittance data for common materials

can be found in Appendix 3-3. An application of thermal radiation calculations
is in Example 3-12. '

Example 3-12

Problem: A steam heating pipe in a greenhouse has a surface temperature of 90
C. The surface has been painted with aluminized paint, £ = 0.45. What is the
radiant flux leaving the surface, and by how much would the flux change if the
pipe were repainted with an oil base or latex paint having an emittance of 0.959

Solution: The Stephan-Boltzmann equaﬁon, 3-49, applies. The pipe surface
temperature is 90 C + 273.15 = 363.15 K. The heat flux with the aluminized
paint is

q" = (0.45) (5.6697E - 8) (363.15)4
= 444 W/m?2. ‘

When the surface emittance changes to 0.95, the flux increases.t'o

q" = (0.95) (5.6697E - 8) (363.15)*
= 937 W/m2,

which is an additional 493 W/m?2.

" The heating pipe also loses thermal energy by convection, but this comparison

demonstrates the importance of emittance in determining the effectiveness of
steam pipe heating systems.

Field experiments have demonstrated a 15 to 20% improvement of steam
heating system heat delivery when aluminized paint is covered with ordinary oil
or latex paint. Why are so many radiators in homes and steam pipes in
greenhouses painted with aluminum paint? There seem to be no reasons other
than aesthetics and custom.
12881\ ¢
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3-4.3. Reflected and Transmitted Thermal Radiation. Reflectance, another
thermal radiation property, is defined as the ratio of thermal radiation which
irradiates a surface and is reflected to the total irradiation upon the surface
(irradiation is defined as the total radiation incident on a surface per unit area

and unit time).

A third property, transmittance. is defined ae #ha Senmsinn wiinn f o




through‘the receiving object. Absorptance, a fourth. property, describes the
fraction absorbed by the surface (and which is converted to- thermal energy).
Conservation principles dictate the sum of reflectance, transmittance, and

absorptance must be 1.0.

3-44. Absorptance and Emittance. Absorptance and emittance are opposites,
physically, but they are numerically equal for a given surface and for radiation
at the same wavelength. A surface which has an emittance of 0.6 for the
wavelength which is characterized by that surface’s temperature will also have
an absorptance of 0.6 for radiation having the same wavelength. For example,
white paint has a solar absorptance which is low — most \solaLm striking -
white paint is reflected. However, the table in Appendix B-3 shows white paint
has a ¢hermal radiationyemittance greater than 0.9, it emits nearly as efficiently
as does a black body when it is at earth temperatures. This value of emlttance

to wavel microns.
o £ISW 379 Ll

W By

emitted l

absorbed

(as heat)

The equality of emittance and absorptance at the same wavelength means white
paint also has an absorptance greater than 0.9 for thermal radiation at
approximately 10 microns wavelength. :

If human eyes were sensitive to wavelengths only between 9 and 10 microns
what we now call white paint would appear nearly as black as carbon. In fact,
almost all objects would be black — all objects except those with metallic;
surfaces. This is because, as can be seen in Appendix 3-3, only metals have
thermal emittances and thereby thermal absorptances less than approximately
c(_)“.9 and a surface with an absorptance that high appears black.

3-4.5. Angle Factors. When two objects exchange diffuse thermal radiation,
the net exchange is determined by radiation flux leaving each object as well as
the radiation angle factor between the two objects. The angle factor is also
termed a shape factor or a configuration factor. The angle factor from one object
to another can be interpreted as the fraction of radiation leaving the first object
intercepted directly by the second. Another way to interpret the angle factor
from, for example, object 1 to object 2,is to 1mag1ne how much thermal
radiation “universe” of object 1 is occupled by object 2.

Any object exchanging thermal radiation with a second must have a non-zero
-angle factor with the second object. Angle factor values range from 0.0 (no
exchange) to 1.0 (exchange only with the second object). An object can have an

. . ¢ +
D
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aﬁgle factor to itself if part of the radiation leaving the surface of that object is
intercepted directly by another part of the same object (for example, the inside
' surface of a hemisphere radiates in part to itself).

Each of any two objects involved in a thermal radiation exchange has an angle
factor for the other object, and the two angle factors are not equal. However, a
reciprocity relationship can be used to relate them,

Fi.A =F) A, _ - (3-50)

where F,, is the angle factor from object 1 to object 2, A, is the surface area of
object 1, etc.

with the cow. The an m a greenhouse plant to the structural cover of
‘ : ately 0.5; one-half the radiation “universe” of
the plant is the cover (roof and walls). The other half is the greenhouse bench
and surrounding plants. By Equation 3-50, the angle factors of the barn to the
cow and_ greenhouse structural cover to the plant are small but not Zero.

Extensive tables of angle factors can be found in many heat transfer texts. In
- Appendix 3-4 are graphs of angle factors for severa] common thermal radiation
exchange situations. Configuration 1 could represent a ceiling and floor

which it “sees” in g thermal radiation sense, or it could be represented as a
sphere. Configurations 5 and 6 could, for example, represent a heating pipe in a
greenhouse exchanging thermal radiation with a wall or other large surface,

- Examples 3-13 and 3-14 demonstrate angle factor calculations.




Example 3-13

Problem: One pig is in a barn. The pig has a surface area of 2 m2. The barn is
10 m by 20 m with 3 m high walls. The pig exchanges thermal radiation with
the inside walls of the barn. Estimate the angle factor from the pig to the barn
and the barn back to the pig.

Solution: A pig in a barn qualifies as a small object in a large space. The
radiation temperature of the animal's surroundings is assumed to be everywhere
uniform, thus, it is not necessary to consider thermal radiation exchange from
each side of the animal with the barn, and calculate separate angle factors for
each part of the animal’s surface to each part of the inside of the barn. We will
neglect the angle factor of the pig’s surface to itself. For example, while the pig
stands, each leg will exchange thermal radiation with the other legs, the under
side of the abdomen, etc. However, we will assume for the sake of the example
that this is a relatively insignificant part of the total thermal radiation exchange
of the pig. -

The angle factor from the pig to the barn (F)_,) can be immediately estimated as

1.0. In return, the surface area of the walls, floor, and ceiling of the barn must be

calculated and is 580 m2. By Equation 3-50
_ y =4 ‘>x(7{°‘7<_'"‘>’+/‘>x3f""‘>?(3)':$\?\3
Fou = FioA/ Ay |

: (1.0)(2 m2)/(580 m2),

= 0.00345.

The other object with which the barn exchanges thermal radiation is itself.
Because the sum of angle factors must equal unity,

12'2_2 = 1.0-0.00345 = 0.99655.

Example 3-14

Problem: For the barn described in Example 3-13, determine the angle factor
for thermal radiation exchange between the ceiling and floor, and between the 3
m by 10 m end wall and an adjacent 3 m by 20 m sidewall. First use the angle
factor graphs and then the angle factor equations in Appendix 3-4 (the angle
factor from the floor to ceiling is configuration 1, for example) . -

Solution: Appendix 3-4 can be used to determine the angle factor between the
ceiling and floor. The ratio &/c is 20/3 or 6.67. The ratio %/c is 10/3 or 3.33. The
graph shows the angle factor is approximately 0.65 and is the same from the
ceiling to floor as from the floor to ceiling. |

‘The equation corresponding to this angle factor calculation, X = a/c = 6.67 and

Y=bjc=333,is
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12
(1+X )(1+Y )

1+X +Y

+ Y(14+X )12 tan™! —Y
(1+X)12

+X(1+Y )1/2 tan’ _.__'.X___ Ytan Y Xtan'X
(1+YH12|
20 m /7
= ceiling

"The solution for X and Y values as above is F,, = 0.66, approximately the same
@i‘?w{etermined from the graph. The symmetry of the problem indicates F,
=0.

0.66 glso.
/ISO» (Amf‘ 1”‘ - obf + 1x(00§¥717+"“§c7 (D= |
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If A, is the 20 m long wall, the ratio md the ratio & X is 3.33. The

The angle factor for thermal radiation exchange between adjacent walls can be
%
found from Appendix 3-4 also. -
PP M{Z b c L= ¥ T 3

If Al is the 10 m long wall, the ratio ¥£X is 10/3 333 a e ratio Zp X is
20/3 = 6.67. The angle factor from Al to Ay is approx1mat ly O. > \\«‘&

angle factor from A to A, is approximately 0.06. ) - x ‘7&"’“/ 3
| NI '

Note: There are small inaccuracies from reading the graphs, for the two angle

. factors should relate through reciprocity according to Equation 3-50,

FialFoy=As/ A,

This relatidnship was approximately confirmed (0.13/0.06 approximately equals
60/30).

As an exercise, use the equation for this geometry as given in Appendix 3-4,
simplify it for walls at right angles, and calculate the actual value of the angle
factor.

It would also be a useful exercise to determine the angle factors from one wall




“to all other walls and the ceiling and floor and to check whether they add to
unity. - : -

Angle factor algebra can be used to determine angle factors for more complex
situations than in Examples 3-13 and 3-14. Calculations are based on
conservation of thermal radiation. If diffuse thermal radiation leaves surface 1
and is intercepted by surface 2, and if surface 2 is divided into two areas, 2a and
2b, then '

R

AF,, =AF 5, + AF 5 (3-51)

The concept embodied in Equation 3-51, along with inventiveness, permits one
to determine angle factors for geometries which are seemingly quite different
from those listed in angle factor catalogs.

As a simple example of angle factor algebra, consider the situation as shown
where the angle factor is desired between areas Ay, and Ay,

di

A2b

"

2a

Applying Equation 3-51,

o
AppF b = vﬁ}f&_' \élaFm-zba 3 | (3-52)

where A; = A, + Ay,. Further application of conservation of thermal radiation
leads to '

AF o, =AF,-AF,,, and (3-53)
R e S :

% . |
\ila/lﬂbi: A1Frag - AP o (3-54)

Configuration 2 in Appendix 3-4 can be used to determine all angle factors on
the right hand sides of Equations 3-53 and 3-54. The areas will be known, thus

2 equations can be solved, and in turn, Equation 3-52 used to calculate
Fibop: ) |
Wh

u en/iﬁlitesimal areas must be integrated to determine finite area angle
T Tactors (see configurations 3-6 in Appendix 3-4), the following relations apply:

QA



FiaradA,, and (3-55)

F,,=-L
A, Al
Fai =] dF x5 ga1- : (3-56)
A

1

The angle factor differential in Equation 3-56 is determined using the equation
form of the appropriate angle factor in Appendix 3-4.

Thermal radiation exchanges are frequently ignored in environmental analyses
or are incorporated into empirical coefficients as we will see later. However,
when situations arise where thermal radiation is important, and the assumptions
built into the empirical coefficients do not apply, a radiation exchange analysis
can begin using the information provided here. More detailed thermal radiation
exchange information and procedures can be found for example, in Sparrow,
and Cess (1978).

3-4.6. Thermal Radiation Exchange. Thermal radiation exchange can be
calculated once angle factors are known. A simple situation is the case of a
small object in large surroundings. This is simple because once thermal
radiation leaves the small object (surface number 1) it will be absorbed by the
large surroundings- (surface number 2). In other words, surface 2 is thermally
black. Even if the absorptance of surface 2 is low, multiple reflections from
place to place on surface 2 will eventually absorb all the thermal radiation. Very

célculated; v s
o Fraeainy
4 4 :
912 = A& 0 (T; - T,). (3-57)

‘Example 3-15 applieé Equation 3-57 to an envjrdnmental analysis situation.

- eventually absorbed

large
surroundings

2

small
object

Example 3-15

Problem: Consider again Example 3-13. If the pig’s skin temperature is 35 C

and the average temoerature of the racoes oo At -




calculate the rate of heat loss by radiation from the pig. The emittance of skin
can be assumed to be 0.90.

Solution: This is a direct application of Equation 3-57. The skin area of the pig
is 2 m2, and the pig will be termed surface 1. Surface temperatures are:

e

= 35+273.15 =308.15,
T,= 10+ 273.15 =283.15.

The heat loss is

(2 m2) (0.90) (5.6697E - 8) (308.154 - 283.15%)
= 264 W. - $ .
| 2RET 2200 Se & -dems = 190

The total thermal radiation leaving the pig is 920W and is found from Equation

3-49. The difference (920 W - 264 W = 656 W) is what returns from the
surroundings. This example shows the importance of the thermal radiation
environment of an object and even if indoor air temperature is adequate,
explains why people feel cold when sitting near a large window in cold weather.

The glass is cold and net thermal radiation exchange with it increases heat loss.

q

More comphcatedpﬂ/xﬂer al radiation exchange situations require. more
sophisticated analyses and are most easily 1mp1emented ona computer

T To begm define M as the Wich IWace Itis -

‘the sum of what i is emitted and what is reflected (plus that possibly transmltted)

7 17 |
i @7\ % % ' B= eW +pH, (+ 'cHl) (3—58)

where W, is black body emissive power calculated using Equatlon 3-47, H is
1rrad1at10n p-is reflectance, and 7T is transmlttance

ad

$ transmitted

' L& emitted ¥¥b B

reflected

§f
H

When the surface is opaque, p =(1 - d) or(l-¢),T=0,and

B:eWb+(l-§\t

(3-59)

ot
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The difference between radiosity and irradiation is the net ener 12y flux lost by an
object by ﬁgnwatlon (defined as positive if leavmg the surface),

g/A=B-H

, =eW, + O\ 9H \Ii (3-60)
From Equation 3-59, ;
H#B - EW /(1 - e) (3-61)

which can be combined with Equatlon 3-60 to yield
q= sA(W -B)/(1-¢), - (3-62)

Equation 3-62 applies to .an object exchanging radiation with all objects in its
radiation surroundings. Consxder the situation with n isothermal surfaces
exchanging radiation as would be the case for inner surfaces of walls in a room.
For any one surface, i, the irradiation on i is the sum of radiation received from
aII other surfaces, T

Hi/\ Z BA ZF BiA, (3-63)

'(3—64_)

Summatlons are taken over all n surfaces pa icipating:in the radiation
exchange. ‘

‘This expressmn for 1rrad1at10n 18 substituted into Equétion 3-59 to obtain the
following set of" simultaneous’ equations relating irradiation on each of the n
‘surfaces. ' ' '

"B, = 810'T +(1 SI)ZF“ o

B2 €0 Ty+(1 - 82)2 sz ..and (3-65)
B,=g,6T.+(I - 8)2

nJJ

Equatlon 3-65 can be rearranged as a matrix equatlon for convenience,

I- (1-g)F,, -(i- e)F,  -(1- eI)Fl_s.. - (1-g)F, _ .
- (1' 82)F2_1 1‘.(1" 82)F2_2 . - (1" 82)F2_3.. - (1" SZ)FZ-D B2
“(-e)F,,  -(l-e)F,  -(- €)F, 3.  1-(1-g)F__ B,

-

81 O Tl (3-66)
. 4 .
_ & 0T,
[ g,0T, "
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Equation 3-66 is a set of n equations in n unknowns, By, B,,..B,,.

| Ty d< 8L & g0 £: F«.«
Before they can be solved to determine radiosities, all emittances, a/ngle factors
and surface temperatures must be known. Emittances will be known from the

‘choice of materials in the building design. Angle factors can be determined

using tables such as in Appendix 3-4 or calculated from the relevant equations.
Surface temperatures can be determined using energy balances which will be a
later topic in this text. (For now, assume they are known or given.)

Simple matrix analysis procedures suited for computer implementation can be
used to solve Equation 3-66. One candidate solution method is Gaussian
elimination, perhaps with pivotal condensation to eliminate the p0331b111ty of a
pivot near zero, and the resulting inaccuracies. :

3-5. Mixed Mode Heat Transfer

Situations frequently arise in environmental analyses where conduction,
convective, and radiation heat transfer occur simultaneously. Examples are: (a)
heat loss through insulation on a heating duct, where loss on the outside surface
is both convective and radiative, and (b) heat gain at a roof’s upper surface with

loss by conduction to the underside and loss on the upper side by convective
-and radiative heat transfer. Such problems can be solved in a straightforward

manner if a proper energy balance is developed.

Typically, an energy balance is written for the surface with an unknown
temperature and solved for that temperature. Ambient conditions are completely -
specified. The energy balance is usually nonlinear and may be solved most
readily by trial and error. Trial and error or iterative solutions are not elegant,
but they work.

o Examples 3-16 and 3-17 illustrate mixed process heat transfer problems which

can arise in environmental analysis.

Example 3-16

Problem: The sun shines on the roof of a barn with an insolation of 600 W/m?2.
The absorptance of the roof for solar energy is 0.6.

solar =
600 Wi/m?2

radiative
exchange

convective
exchange




The roof exchanges thermal radiation with the sky. The surface emittance is
0.90, and sky temperature can be approximated by the Swinbank model,

Ty, = 0.0552T,;, (3-67)

where temperatures are expressed in Kelvin degrees.

The roof also exchanges thermal energy by convective heat transfer with the

' outside air, the convective coefficient is 30 W/m2K. Ambient air temperature is
25 C.

The roof is insulated, having an R-value of 2 m2K/W. Air temperature under the
roof is 30 C, and the surface resistance between the lower surface of the roof
and air inside the barn is 0.2 m2K/W. This surface resistance includes both
convective and radiative resistance.

h = 30 W/m 2K
"<— R =02 m K/W
R=2.0m?K/W
inside
t .=30C
air

The temperature of the lower surface of the roof, tiss 1S rmportant in determining
the comfort of animals within the barn; they exchange thermal radiation with
the roof. What will be the temperature of the lower surface of the roof wrth the
~ given conditions? T T

Solution: All boundary conditions are known ‘except for sky temperature, and a
model is available to calculate that,

Ty = 0.0552(25 C +273.15)L5,
- = 284.19K (=11 C, or 14 K below air temperature)

The temperature of the lower Surface of the roof is desired, but before that can
be found, the temperature of the upper surface, t,, must be calculated. To
determine t, an energy balance on.the upper surface of the roof is formed as
follows:

gains = losses,

" — " " . " .
Qsolar =4 convective T 4 radiative T4 conductive*

In this energy balance, solar radiation is considered the only gain, other fluxes
are losses. The assumptions as to which are gains and which losses are not
fixed. The energy balance is correct as long as temperature differences are
assigned to agree with the assumed directions of heat transfer.




+

Absorbed solar flux is calculated as
q”solar = (0.60) (600 W/mz) =360 W/m?2.
Convective heat loss is

= hAT = 30 W/m2K (T - 298.15 K).

” .
q convective

Absolute temperatures will be used in all terms of the energy balance because
they are required for radiative heat transfer calculations.

Conductive heat transfer is R=22 f’rf@to the inside air)

q” conductive = AT/ R = (T - 303.15 K)/2.2 m2K/W.

Radiation heat transfer between the barn’s roof and the sky can be considered a
situation of a relatively small object in large surroundings. Thus thermal
radiation loss to the sky can be written

q” radiation = Eus© (Tus4 -284.19%) .
= (0.9)(5.6697E-8)(T* - 65.228E + 8),

= 5.1E-8T*- 332.7.

b g "

All the terms can be substituted into the energy balance and rearranged to solve
for Ty, ' ' ' '

360 W/m?2 = 30(T - 298.15)

b (Tye- 303.15) /2.2 + 51(Tys /100)% - 332.7
=T N

or  5.1(Ty /100)* + 30.4545T s = 9775.3.

Note: For convenience, T, is divided by 100 to eliminate the need to carry
exponents of 10 in the equations. A trial and error solution will be used to
determine a value for T, such that the left hand side (LHS) of the last equation
equals 9775.3. " '

Tys-K : LHS

310 , 9911.89

305 9729.96 -

306 9766.23 ‘ \ )

306.5 9784.39 : wW :

306.25 9775.31 v .0

Lol v ]

- 7 : ;

We have reached a solution, t,,, = 306.25 K - 273.15=33.1 C.

L]
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Heat transfer through the roof fo air within the barn forms a series thermal
circuit from which the temperature of the lower surface of the roof, tic» can be
found. - |

R=2m KW ‘R=02nm KW

This is a series thermal circuit, thus, temperature differences scale linearly with
resistances. The temperature of the lower surface of the roof is

iy = 33.1C+(2.0/22)(30C-33.1C)
= 30.3C.

The lower surface temperature is only slightly above inside air temperature and

solar heating has little effect. This is because the roof is well insulated. As an

exercise, do the e

Xample again using a roof thermal resistance of 0.3 m2K/W, an
uninsulated case. ——

A second useful exercise would be to calculate the magnitude of each term of
the energy balance on the upper surface of the roof and determine whether
conductive, convective, and radiative heat losses equal the absorbed solar
energy when added together, and compare them as to each one’s importance as
a means of heat loss from the upper surface of the roof. :

Example 3-17 \M\X&“‘ﬂ y

\‘)”\/Q an? 1
Problem: Greenhouses are frequently heated by steam circulated through iron
pipes. The condensing steam contains a great deal of energy which is added
from the outer surface of the pipe to the greenhouse by convection to the air and
radiation to the interior parts of the greenhouse.

Consider a case where heating pipes with outside diameters of 56 mm are used.




The inside diameter of each pipe is 46 mm. The iron in the pipe has a thermal

conducivity of 52 W/mK.

The steam is pressurized and has a condensation temperature of 110° C.
Condensation is such a vigorous process that we can assume the inside surface

of the pipe equals steam temperature.

The greenhouse air temperature is 22 C and the mean radiant temperature of the
surroundings of the heating pipe is 10 C (the pipe is next to a cold outside wall).
Mean radiant temperature is the hypothetical temperature which would cause
the same net radiative heat transfer with the heating pipe as if the surroundings
were all at this mean radiant temperature instead of their many different actual
temperatures.

If the heating pipe is painteg black and has a surface emittance of§0.95, S:vhat is
the net thermal exc between the pipe and the greentiouse? How much of
the heat transfer is convective and how much radiative?

Solution: This is a situation of both series and parallel heat transfer involving
conductive, convective, and radiative heat transfer. The convective and radiative
transfers from the outer surface are in parallel, and the two together are in series -
with conductive transfer through the pipe wall. The parallel transfer is
somewhat different from what we have seen before. Normally, parallel heat
transfer is defined as being between the same temperature difference, but here
convective heat transfer is_to air at 22 C and Wr is'to "
surroundings at 10 C. However ‘the problem is readily solved ‘using energy

Dalance ana ySlS o

The heat transfer network is as shown (with temperature expressed in Kelvin).

’\/\,——0295.15A K Y ¢,

convective

\‘ - 38315 K curface .
(Lo o—\/\/—0 (resistances)
C B conductive

radiative

»

283.15 K i@ C

Radiative heat transfer will not be considered a thermal resistance for solution
- of heat transfer, although in principle it could be. Instead, an energy balance
will be developed for the outside surface of the pipe, with the goal of
determining the pipe’s surface temperature. After that, heat transfer magnitudes
will be determined. This strategy is useful to solve many heat transfer problems
of this sort, as it was in Example 3-16.

At the pipe’s surface,

conductive gain = radiative loss + convective loss.
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The conduction heat transfer thermal resmtance is found in cyhndncal
coordinates from

Reonducive = (In(ry / 1;))/2wkL
= (In(28/23))/2m(52) (1)  (per unit length)
- =0.000602 mK/W.

Each meter of pipe has 0.1759 m?2 of surface area. For now, calculations will be
on a unit area basis. The unit area (based on the outside surface area) resmtance
~ of the plpe wall to conduction heat transfer is :

Rmndume = (0.000602 mK/W) (0.1759 m?/m)
~ =0.000106 m2K/W,

‘and heat gain to the surface by conduction is

q conducuve” AT/ R
=(383.15K - Tsurface) / 0.000106 m2K/W.
=9441(383.15 - Tgyrface)

The pipe will be assumed to radiate as a small object in large surroundings; the
angle factor will be assumed to be 1.0, and Equation 3 51 apphes Loss of heat
from the surface by radlatlon is

Q" ragiative = (0.95) (_5.6697E- 8) (T4 yrace - 283.154)
= 5.386(Tgyrface / 100)4 - 346.3

Convective heat transfer is by natural means, but it is not clear whether it will
be by laminar or turbulent transfer. We can be guided in deciding whether to
assume laminar or turbulent conditions by the criterion of Equation 3-34. The
laminar and turbulent ranges divide at a GrPr value of 108, thus, at the dividing
value

L’AT=1: L = 0.056 m. (3-68)

If flow is laminar, the temperature difference between the pipe’s surface and the
air must be no more than

AT =1/L3=5694 K.

We can be confident airflow around the pipe, and convective heat transfer, will
be laminar.

With laminar heat transfer, the convective coefficient is calculated using
Equation 3-40 from Table 3-2, ¢ é }’

h = 1‘32 ((Tsurface = 295.15 K) / 0-056 m)0-25,
=2.713 (Tsurfaée - 295-15)0‘25-
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Convective heat transfer from the surface is

— hAT = 2.713(Tysface - 295.15)125.

”
4 convective

The energy balance can now be written (for the surface temperature expressed
as Ty)

9441(383.15 - T) = 5.386(T, /100)4 - 346.3
) . +2.713(Ts- 295.15)L.23

and rearranged as
e S b

I e

T13(T, - 205.15)\25 + 9441T - 3,617,760 = 0

5.386(T, /I00)* + 2

which is a single equation with one unknown. As before, a trial and error
solution will be used, searching for a value of surface temperature such that the
left hand side (LHS) of the rearranged energy balance equals zero. A sequence
which leads to the solution is '

Ts.K - LHS |
382 - -9432 T
- 383 : 32

382.99 -63

382.995 -16

382.997 3
. 382.9967 03.

_ In this solution, the value of LHS changes rapidly with small
changes of Ty, thus, the value Tg = 382.9967 K (= 109.8467

'C) is very close, and convergence need be pursued no further.

In terms of significant digits, as determined by good engineering practice,
382.9967 has too many, but for the purpose of illustration, all decimal places
will be carried to check how well the energy balance is satisfied. Note how in
this example the surface temperature must be found with considerable care
because of the large influence small errors have on the calculated value of
conductive heat gain. To obtain accuracy, the constant in the energy balance
(3,617,760) must be carried to this number of significant digits because the
convergence criterion in the solution of the rearranged energy balance is of the
order of unity.

With the surface temperature found, heat transfer magnitudes can be calculated,

Q" conductive = = 9441(383.15 - 382.9967) = 1542 W/m?2,
q” radiative = 5.386(382.9967 / 100)* - 346.3 =813 W/m2,
and

qQ"convective = 2.713(382.9967 - 295.15)1-25 =730 W/m2.
The energy balance is essentially satisfied. Conductive gain to the surface is

L]
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- 1542 W/m?, and the sum of losses is 813 + 730 5-5,-',:15_43 W/m?2) This magnitude
of error is to be expected, for the conduction heat tragsfer term is extremely

- sensitive to small rounding errors. A check to be sure /;'f]e balance is satisfied is
important to prevent inadvertent errors.

‘Heating per unit length of pipe is frequently <e/sired; such values can ‘be
obtained from the above by multiplying each flu by the surface area per meter

of pipe;0.1759 m4/n: i o
pp@- >Va7)
The temperature difference between the pipe surface and ambient air is much

less than that required for turbulent convective heat transfer; that assumption
was correct.

Note the loss of heat from the pipe is balanced between convective and
radiative. The large radiative component is important in determining the
environment of plants near the pipe. They will be subjected to a significantly
warmer environment than will those plants shaded from thermal radiation and
may exhibit different growth and timing.

~ The large radiative term is also significant in leading to a means to save heating

- energy. If the heating pipe is along the outside foundation wall, a reflective

- (foil-faced) insulation placed on the inside surface of the wall will reflect much

- of the radiant energy back into the greenhouse instead of allowing the wall to
- absorb and lose it to the outdoors. ‘

It would be a useful exercise to analyze the heating situation again using a
different value of surface emittance for the pipe (0.40)to represent aluminum
p.ain.tg for example). Would you expect the conVective component to change
significantly? ' ‘ ‘

- A second useful exercise would be to solve the example using the assumption

- that the pipe wall’s thermal resistance is insignificant and the pipe’s outside
surface temperature equals the steam temperature. Would you expect much
difference in the calculated radiative and convective heat transfer rates?

3-6. Program BALANCE

Repeated solutions of energy balances, such as in Examples 3-16 and 3-17, are
tedious. Program BALANCE, which is an executable file containing built-in
instructions for its use, provides a quicker means to solve the generalized
equation contained in the two examples:

4 Ad ‘
A1(T/100) + AX(T - A3) + AST+ A6=0. (3-69)
. e .
For example, in Example 3-17, , ;
Al =5.386, \ | -
A2 =2.713, J& Hoes Conveilin

Froms




A3 =295.15,
A4 =125,
A5=9441, and
A6 =-3,617,760.

In Example 3-16,
Al =5.1,
A2 =0.0,
A3=0.0,
A4 =0.0,
A5 =30.4545, and
A6 =-9775.3.

3
Example 3-18 \OQBU“\ A\

~ Problem: Repeat Example 3-17 and develop a graph to show the effect of the
thermal conductivity of the pipe wall on the surface temperature of the pipe.

-Solution: The thermal conductivity of the pipe wall influences terms A5 and
A6 of Equation-3-69. This can be seen by returning to Example 3-17 and
- reviewing the derivation of the energy balarice. For the same mean radiant
temperature of the surroundings,

= 1/((0 1759 m /m)(ln(ro/r ))/2nk) = 181. 56k and

A6 =- -346.3 - (383.15) 1

(o 1759 m fm)(In(r /r,)/21k)
 =-3463- 69566k

’

The thermal conductivity used in Example 3-17 was 52 W/mK. From Appendix
3-1, thermal conductivities span the range from approximately 400 down to
approximately 0.05 W/mK. The following values of conductivity lead to the A5
and A6 values shown, and BALANCE provides the surface temperature values.

k, W/mK A5 Ab surface temperature, K

0.1 18.16 -7,302 342.6
05 90.78 -35,129 369.4
5.0 907.8 -348,176 381.5
50 9,078 -3,478,646 383.0

500 90,779 -34,783,346 383.1

0.05 9.078 -3,825 328.41

0.01 1.816 -1,042 303.16

The data, when graphed, provide the following on a semilogarithmic scale. It is

obv1ous that a \@;ngy_v\alﬂe of thermal gggd@lty of the pipe wall would be

96
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n_ecessary to affect the pipe’s surface temperature significantly, a value much

- lower than typifiesmetals, ———  —%

390

380

370

temperature

360

350

340 L L L ]
-1.0 ) 0.0 1.0 2.0 3.0

log(thermal conductivity) ﬁf&\‘). ’

3.7. Combined Convective and Radiatioh Surface Coefficients

Calculations for radiation heat transfer differ inarkedly in form from
calculations for convective and conductive heat transfer. A desire to attain
greater similarity among the three has led to the concept of a radiation surface
coefficient of heat transfer. Although radiation heat transfer is properly -
calculated as described in previous sections, one can, in concept, propose to
estimate radiation heat transfer as ’

7 q"=h &(T,-T), (3-70)

where T and T, are the temperatures of the surface under consideration and the
ambient air, respectively. The coefficient, hy, is defined as the radiation surface
coefficient, and is used to calculate the total convective and radiative heat loss
from the surface by

=
s

=L = q"=(0+h)T,-T). | (3-71)

R e
7~

Cyds

In concept, this is correct for the form of h; has not been restricted. When heat
loss from a surface is expressed in this form, analysis is made easier because
radiation heat transfer is linearized and problems of solving nonlinear equations
(e.g., Examples 3-16 and 3-17) are avoided. Prior to accessibility to
programmable calculators and small computers, avoiding nonlinear problems
was a useful goal to achieve.

Linearizing radiation heat transfer can be visualized as an application of a
Taylor’s series expansion of the Stephan-Boltzmann expression for thermal
radiation emission. .If the temperature difference between two objects involved
in a thermal radiation exchange is small, the expansion may be usefully
truncated after the first term leaving an approximating expression for the net
.exchange between two objects (assume for now only two objects are involved
in the exchange, such as a small object within a large enclosure, or one wall of a




room exchanging thermal radiation with the other surfaces of the enclosure).

Radiation surface coefficients are obtained from knowledge of actual thermal
radiation exchange. For example, consider the previously considered case of a
small obJect in a large room,

q,/ =g, 0 .(Tl - T2 ),
where Surféce 1 is the small object in the large'ropm, surface 2.

Thus, the radiation surface coefficient defined in Equation 3-70 for this situation
is

ho=¢,6 (T, -T, (T, - T,). (3-72)

‘Unfortunately, this linearization still involves a nonlinear equation to determine

h, and h; is a function of temperatures of the surfaces involved in the heat
exchange. If T, does not equal T,, there is little advantage in using a radiation
surface coefficient. However, if T, and T, are equal, A; << A,, and (T} - T,) <<
T, the following approximation may be made:

(3-73)

ave °?

h =4g GT

where T,y = 1/2(T; + T).

It is frequently assumed that h, is a constant which can be determined, but in
strict terms this is not true. Since nonlinear equations in the forms we have seen
can be solved using computers, the need to linearize heat transfer equations is
less strong and radiation heat transfer equations can be used directly to avoid
the approximation of the radiation surface coefficient.

One situation is still universally used wherein radiation heat transfer is treated
using a surface coefficient, and convective and radiative heat transfer are
combined as in Equation 3-71. This involves determining the surface
coefficients for heat transfers through walls, etc., of buildings. For this situation,
convective heat transfer equations such as in Section 3-3 and radiative heat
transfer equations such as in Section 3-4 are not used. Instead, surface
coefficients which have been determined empirically to represent average
conditions for buildings are accepted, radiation is obscured in the process, and
heat gain or loss from the surface of the wall, etc., is determined using Equation
3-71 with the empirical coefficient used in place of (h, + h.). Appendix 3-5
contains surface coefficient data as presented, for example in the ASHRAE

Handbook of F undamentals (1989).

These combined coefflclents will be used repeatedly throughout this text to
calculate building heat transfer gains and losses. It is useful at this point,
however, to highlight an important assumption inherent in the data of Appendix
3-5. The data apply. in a strict, sense only when the air temperature involved in

)



| _ the heat exchange (e.g., the air inside a barn exchanging heat with the inside
“surface of an outside wall) is the same as the mean radiation temperature of the
surroundings of the surface in guestion.

‘This is obviously a crude assumption for many applications to agricultural
buildings where the temperatures of walls, for example, can differ significantly 1
from air temperature. This would be an especially rough approximation for
greenhouses where glass temperature is cold during winter. The data was
developed for commercial and industrial buildings with heavy and insulated
walls, and in those applications the asSumption is more suitable. However, this
difference has been frequently overlooked in heat loss calculations for poorly
-insulated walls, and the errors introduced by the assumption have been
accepted. ' '

3-8. Thermal Resistance of Plane Aii'spaces ’

e i e e

= S

‘A situation which can arise in environmental analysis, and which involves both
convective and radiative heat exchange, is the transfer of heat across plane
airspaces. One example is loss of heat through an uninsulated wall where the
wall cavity is hollow. Another is loss of heat through a night curtain in a
greenhouse, where the curtain is composed of at least two layers of fabric or
 sheet plastic and separated by airspaces. -

[

inside sheathing

framing and open
space

deployable curtain
outside sheathing

air gap =———

siding tdoor |

Values for the thermal resistance of such airspaces have beer determined
experimentally and are published, for example, in the ASHRAE Handbook of

Fundamentals (1989). Appendix 3-6 gives thermal resistances of plane

airspaces. | F3¢4

The thermal resistance depends on several factors.; The mean temperature and
> the thickness of the airspace, ’the temperature difference from one side to the
other, 4nd the direction of heat transfer are four factors which influence
convective heat transfer, Radiative heat transfer is affected by.the’ temperatures

of the two surfaces which form the airspace and*the emittances of the two
surfaces.

It is unlikely both surfécés bounding the airspacé will be thermally black, thus
Wof the cavity must be determined.
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When the emittances of the two sides of the space are estimated, the cavity
emittance is calculated, and the temperatures are estimated, the effective
resistance can be calculated for a given direction of heat transfer. :

Example 3-19

Problem: Estimate the R-value of just the cavity in a hollow wall framed with
lumber which leaves approximately a 90 mm airspace. Consider a situation of
winter heat loss from the building where the air temperature inside the building
is approximately 20 C and it is - 10 C outdoors. '

Solution: Several assumptions are required to obtain a solution. First, it will be
assumed the mean airspace temperature is the average of inside and outside
temperatures. If we knew more about the wall construction we might be able to
obtain a better estimate of the mean temperature, but for now we will use a
simple average. We will also assume the temperature difference across the
cavity is 10 K. This, again, will depend on the wall construction and how much
insulation value is in the inside and outside sheathing, and outside siding,
compared to the R-value of the cavity. Finally, assume the materials to sheath .
the wall are thermally black, their effective emittances for thermal radiation
exchange are 0.9. ~ '

By Equation 3-74, the effective emittance of the airspace is
E=[(1/0.9) +(1/0.9) - 1]1=0.82.

If this is a building wall, the orientation of the airspace is vertical and heat
transfer is horizontal. The tabulated data in Appendix 3-6, for a mean airspace
temperature off@ C, an airspace thickness of 88.9 mm, an effective cavity
emittance of 0.82, and a temperature difference of 16.7 K shows a thermal
resistance of 0.16 m2K/W. When the temperaturé difference is 5.6 K, the
resistance is 0.18 m2K/W. Our assumption of a 10 K temperature difference
places us approximately in the middle, thus, we can estimate the actual thermal
resistance will be 0.17 m2K/W. - - |

3-9. Thermal Radiation Exchange with Gases

To this point all thermal radiation exchange has been assumed to occur among
solid objects. Gases also emit and absorb thermal energy. The model for sky
temperature in Example 3-16, Equation 3-67, is actually a model for the mean
radiation temperature of the lower part of the atmosphere. Unless the sky is very
clear and dry, thermal radiation exchange with the sky is exchanged only with
the lowest few hundred meters of air.

The effective emittance of air depends on both humidity and the cg_rbon dioxide
content of the air, both of which can be high in agricultural buildings. The

4
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- following data are emittance va}Ltgs for carbon dioxide and water vapor at 24 C:
B (W‘\W .

Path length, m Carbon Dioxide, ppm  Relative Humidity, %
1,000 3,000 10,000 10 50 100

3 0.03 0.06 009 0.06 017 029
33 009 0.12 016 022 039 047

In a barn during times of minimum ventilation, for example, the carbon dioxide
level may be greater than 3000 ppm and the relative humidity may be higher
than 70%. For an animal in the center of a barn, the effective path length of air
surrounding it may be greater than 3 m, thus, thermal radiation exchange with
the air may be significant. As a rough rule, the effective path length for air
radiating to the walls in an enclosure equals four times the mean hydraulic
radius of the enclosure. However, in environment control analyses this factor is
usually ignored. With the advent of computers and their processing power, it is
more feasible to include radiation exchange calculations in determining the
environment provided to animals and plants. However, radiation exchange
calculations which involve gases are quite complicated, and thermal radiation
exchange with the air is neglected. It is not clear, however, this is a reasonable
assumption,ﬁw\(_},@&w&, for example, develop analyses for
radiation exchange between solid objects and gases, methods which can be
useful in exploring the thermal radiation interaction of solid surfaces and air.

SYMBOLS

A area, m2
B radiosity, W/m?2
v coefficient in Equations 3-33 and 3-44
Cj, ¢y integration constants '
Cp  specific heat, kJ/kgK
hydraulic diameter, m
effective emittance
radiation angle factor
gravitational constant, m/s2
unit area mass flow rate, kg/m?2s
T Grashof number, see Equation 3-32
coefficient of convective heat transfer, W/m2K
radiation surface coefficient of heat transfer, W/m2K
irradiation, W/m2
thermal conductivity, W/mK
thickness or length, m
generalized spacial variable, m
exponent in Equation 3-33 .
Nu Nusselt number, see Equation 3-29
Pr - Prandtl number. see Frmatin- 2_2"
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heat transferred, W

heat flux, W/m2

internal heat generation, W/m3

radial dimension, m

unit area thermal resistance, m2K/W
Reynolds number, see Equation 3-43
temperature, C :
absolute temperature, K

unit area thermal conductance, W/m2K
velocity, m/s

volumetric flow rate, m3/s

thermal radiation emissive power, W/m?2
cartesian dimension, m

~ thermal diffusivity, s/m?2

coefficient of thermal expansion, K-1
thermal radiation emittance
wavelength, microns

dynamic viscosity, kg/ms

density, kg/m3

reflectance :
Stephan-Boltzmann constant, W/m2K4
time, s

transmittance

EXERCISES

Consider a wall made of three layers. The outer layer is four inches of
concrete, the inner layer is the same, and the center layer is made of two
inches of expanded polystyrene board stock (molded beads,
approximately 20 kg/m3). If the temperatures of the inner and outer
surfaces of the wall are 25 and 11 C, respectively, what temperature exists
at the interface between the inside and center layers and the center and
outside layers? What is the flux of heat through the wall? )

A hot water heating system is used to heat a calf nursery. Heated water at
70 C flows from the boiler to the nursery through a pipe with an outside
diameter of 60 mm. Estimate the convective heat transfer coefficient
(based on unit area, and then on unit length) between the pipe surface and

the surrounding, still air when the air is at 20 C. -

Atmospheric air at 60 C enters a sheet metal duct with a cross-section of
0.3 m by 0.5 m. The duct wall is at a temperature of 10 C. During
operation, the airflow rate varies between 0.1 and 0.3 m3ys. Develop a
graph of the convective heat transfer coefficient between the air and the
duct wall for the range of expected airflow rates. :

Consider the glass glazing on a greenhouse. The greenhouse is single-
_ g g g g g ‘ g




glazed and glass thickness is 8.5 mm. Temperatures of the inside and
outside surfaces of the glass are -5 C and -6 C, respectively. Solar
insolation with an intensity of 300 W/m2 strikes the glass (direct normal
intensity). Eight percent of the insolation (or 24 W/m?2) is absorbed within
the glass. Determine the rate of heat loss from inside the greenhouse to
the glazing (W/m?2) when the sun shines, and compare that rate to the rate
of loss if there were no absorption of solar energy within the glass.

A significant problem related to convective heat transfer in environment
control is heat gain or loss from air ducts carrying cold or warm air to
conditioned spaces. It is often of interest to determine whether the heat
gain or loss is sufficient to warrant concern or a sufficient reason to add
insulation. '

A refrigeration system provides cooled air for an onion storage room at a -

food processing plant. For reasons no one can explain, the refrigeration
system is located at the opposite end of the building from the storage
room - a distance of 50 m. The duct. passes through the building on the
. way to the storage room, and air in the building (surrounding the duct) is
- at 20 C. The cooled air should arrive at the storage room at 1 C. The
question is, what should be the temperature of the air when it leaves the
© refrigerator? : o

~ The problem is one of forced and natural convection — forced inside the
- duct and natural outside. Radiation and conduction complicate the
problem, but for now make the following assumptions:

(a) the thermal resistance and thickness of the duct wall are negligible (it
is made of sheet metal and has no insulation),

(b) the combined natural convection and radiation surface coefficient on
- the outside surface of the duct is 11 W/m2K,

(c) although the duct will be cold, there will be no condensation on its
outside surface. This is obviously not realistic, for there likely will be
condensation and associated additional heat exchange, but for now ignore
this complicating factor, and

(d) assume the duct is round with a diameter of 0.5 m and airflow at a rate
of 0.8 m3/s. The density of the air inside the duct is approximately 1.3
kg/m3. ’
Do the following:

(a) Determine the temperature at which air should be discharged from the
refrigeration system to provide 1 C air at the storage room.

(b) Determine the actual natural convection coefficient for heat transfer to




the duct from the surrounding still air.

6. A small temperature sensor is used to measure air temperature in an air
duct in which hot air flows. The actual air temperature is 95 C, and the
actual duct wall temperature is 45 C. The convective coefficient between
the air and sensor is estimated to be 150 W/m2K. The surface emittance of
the sensor is 0.95.

The sensor can measure only its own temperature, and the goal of using a
‘sensor is for its temperature to equal the temperature of the medium being
sensed. What will be the temperature indicated by the temperature sensor
— the apparent air temperature?

7. In a food processing plant, cold water at 3 C is pumped through a 20 mm
(outside diameter) galvanized steel pipe. The pipe passes through a room
where the air temperature can be as high as 30 C and the relative humidity
can be as high as 90%. To prevent condensation on the pipe surface, it is
insulated with a sleeve of foam rubber (thermal conductivity of 0.03
W/mK). What thickness of insulation is needed to prevent condensation?
(Begin by assuming laminar airflow around the pipe.)

8. Consider a 300 mm diameter, round sheet metal duct insulated on the
outside with 50 mm of cellular polyurethane (R-11 exp.). Air moves
through the duct at a velocity of 7 m/s, and is at 50 C and 30% relative
humidity. The heat transfer coefficient (convective plus radiative) at the
outer surface of the insulation is 20 W/mZ2K; ambient air témperature is 10
C. Calculate the outside surface temperature of the insulation.

9. A single layer night curtain is being used in a large greenhouse. The
material of the curtain has no significant thermal resistance in itself; all
the resistance is in the convective and radiative properties of the two
surfaces. Air temperatures below and above the curtain are 17 Cand 8 C,
respectively. Radiation temperatures of the greenhouse above and below
the curtain are -5 C and 15 C. Emittances of the two sides of the curtain
material are 0.20 and 0.90 (one side is aluminum foil, the other is cloth).
The greenhouse above and below the curtain can be assumed thermally
black (¢ = 1.0). For maximum thermal benefit, should the foil side of the
curtain be on the upper or lower sideof the curtam"
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