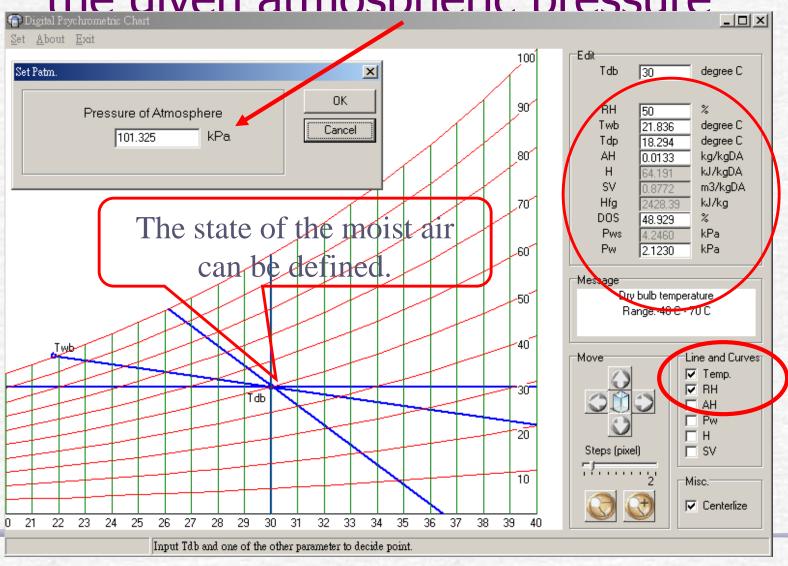
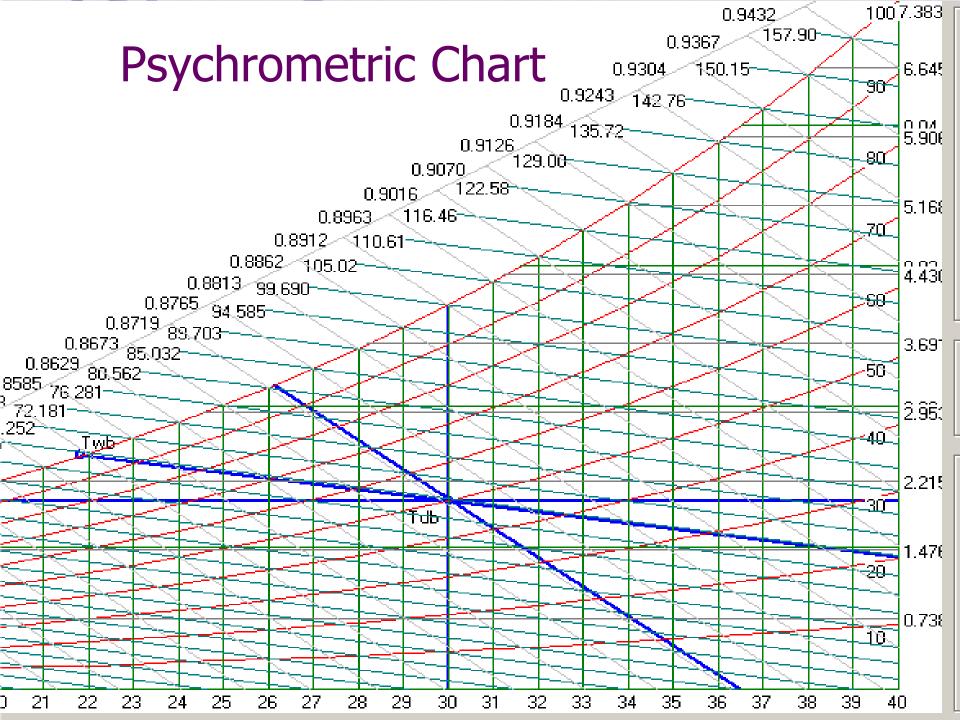
### Engineering Fundamentals: part I Related to moist air and water

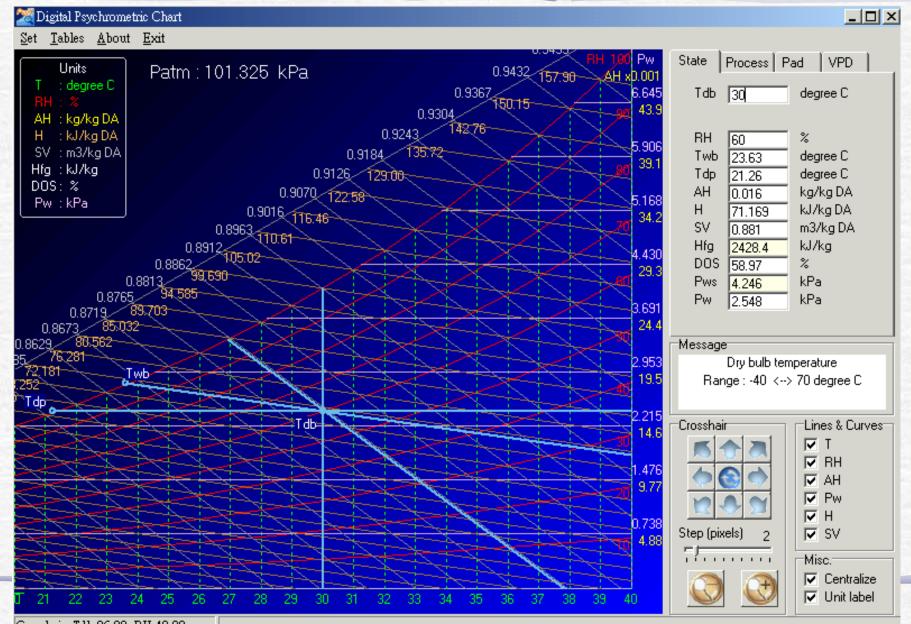

- 1. Thermodynamic properties of moist air
  - 1. State
  - 2. Process
- 2. Pad and Fan system
  - 1. Pad efficiency at various facing velocity
  - 2. Pad efficiency and pressure drop at various thickness
  - 3. Fan curves
- 3. Efficiency of the nozzle in misting/fogging system
- 4. Psychrometric related Tables generated by Psychart software


## Thermodynamic properties of moist air

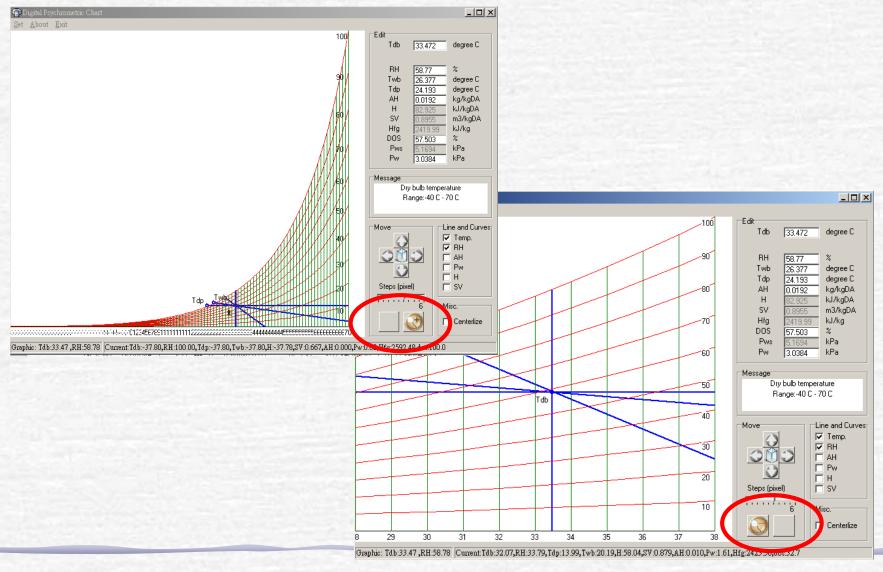
- 1. dry bulb T
- 2. wet bulb T
- 3. dew point T

- 4. relative humidity
- 5. absolute humidity (humidity ratio)
- 6. specific volume
- 7. enthalpy
- 8. vapor pressure
- 9. saturated vapor pressure

### With 2 independent properties and the given atmospheric pressure

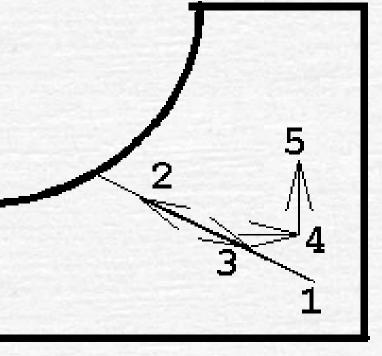




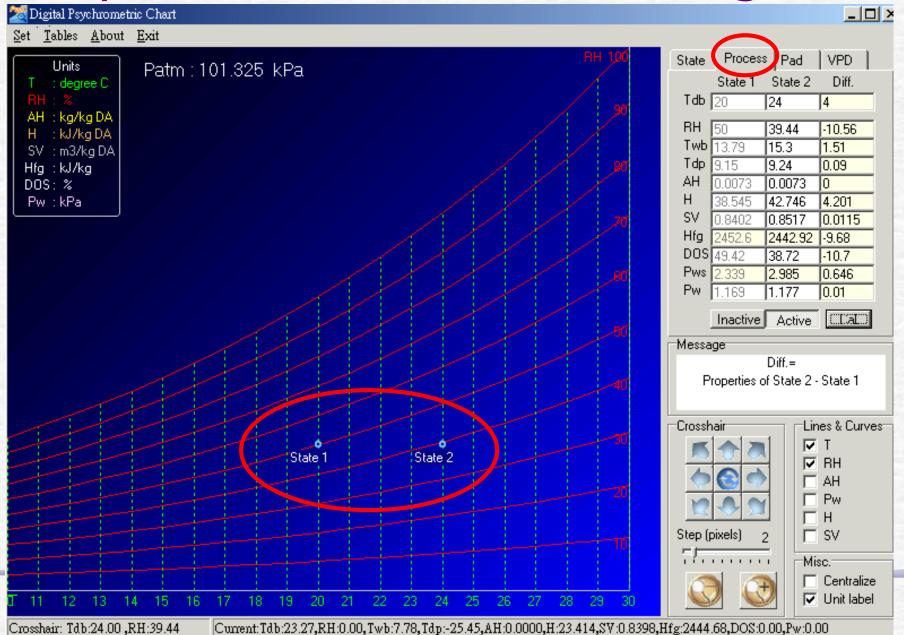


### Independent Properties

|                    | $T_{wb}$ | rh | $T_{dp}$ | AH | SV | Н | P <sub>ws</sub> | $h_{fg}$ | $P_{\rm v}$ |
|--------------------|----------|----|----------|----|----|---|-----------------|----------|-------------|
| T <sub>db</sub> <  | P        | P  | P        | P  | P  | P | I               | I        | P           |
| Twb                |          | P  | P        | P  | P  | Ι | P               | P        | P           |
| rh                 |          |    | P        | P  | P  | P | P               | P        | P           |
| Tdn                |          |    |          | I  | P  | P | P               | P        | I           |
| T <sub>dp</sub> AH |          |    |          |    | P  | P | P               | P        | I           |
| SV                 |          |    |          |    |    | P | P               | P        | P           |
| Н                  |          |    |          |    |    |   | P               | P        | P           |
| P <sub>ws</sub>    |          |    |          |    |    |   |                 | P        | P           |
| $h_{fg}^{ws}$      |          |    |          |    |    |   |                 |          | P           |

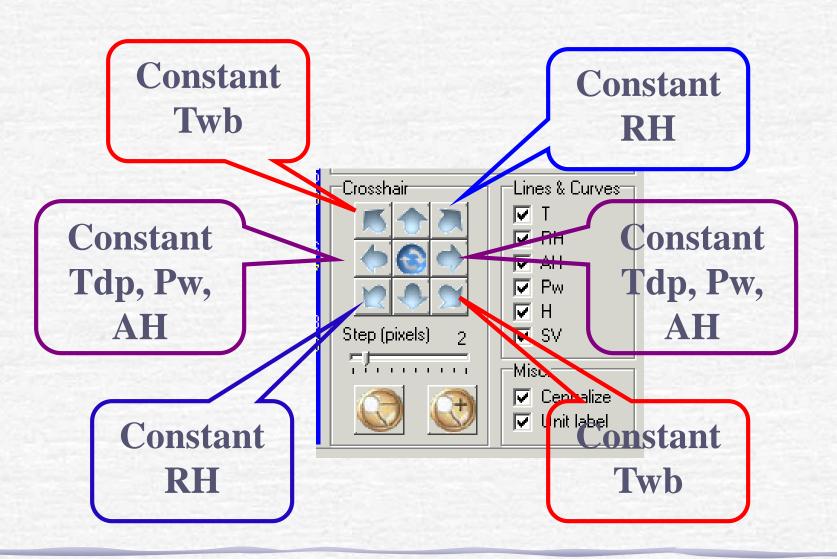
#### Digital Psychrometric Chart



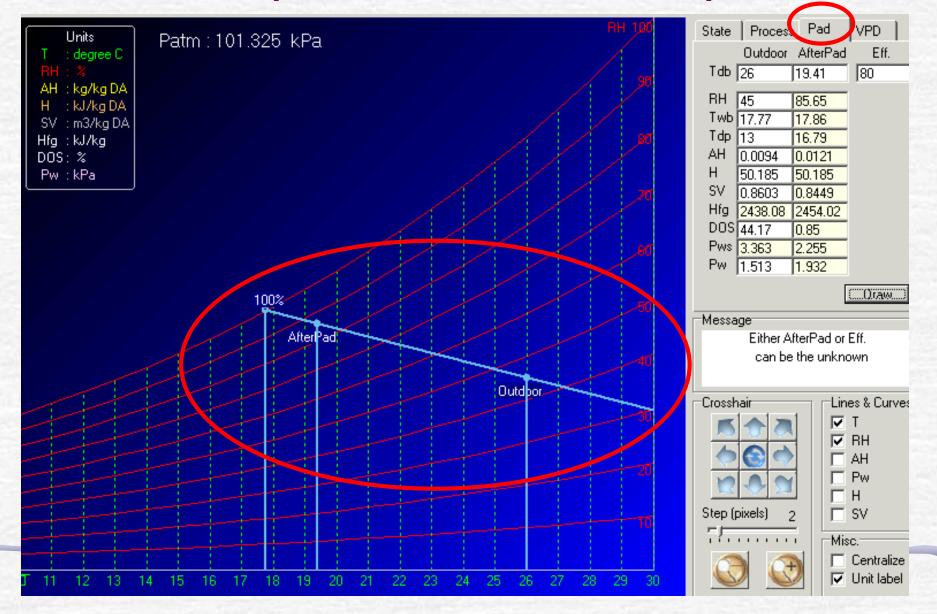

### Zoom in & Zoom out




#### Process: between states


- Sensible Heating (3->4)
- Sensible Cooling (4->3)
- Humidification (4->5)
- Dehumidification (5->4)
- Heating (3->5, 3->1)
- Cooling (5->3, 1->3)
- Air Mixing (1, 2->3)
- Evaporative Cooling Drying (1->2, 1->3)
- Combination of above (1->2->3->4->5)




### A process with sensible heat gain



### Move along prefix lines & Curves



### Efficiency of a Pad and Fan system



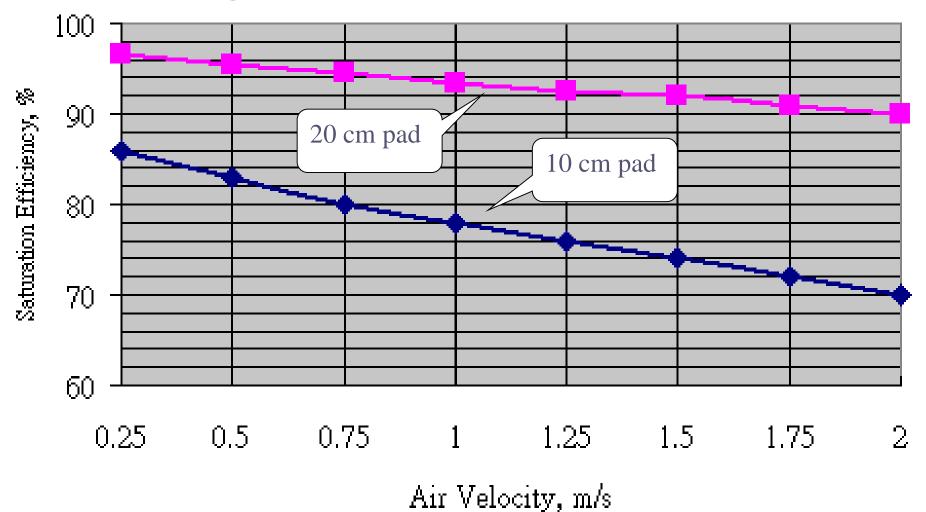
# Pad efficiency at various facing velocity

$$Eff = 86.62 - 20.787 * V + 2.755 * V^2$$

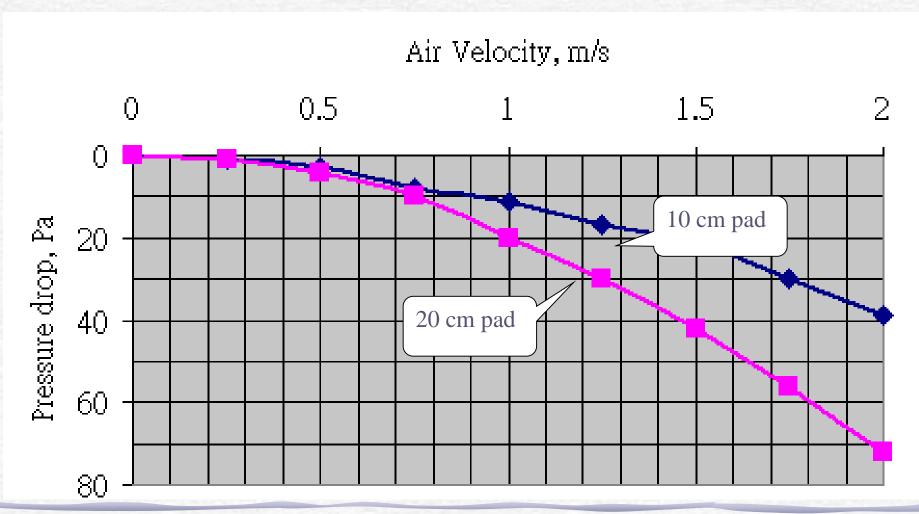
Kool-Cel pad

$$Eff = 91.034 - 17.91 * V + 5.231 * V^2$$

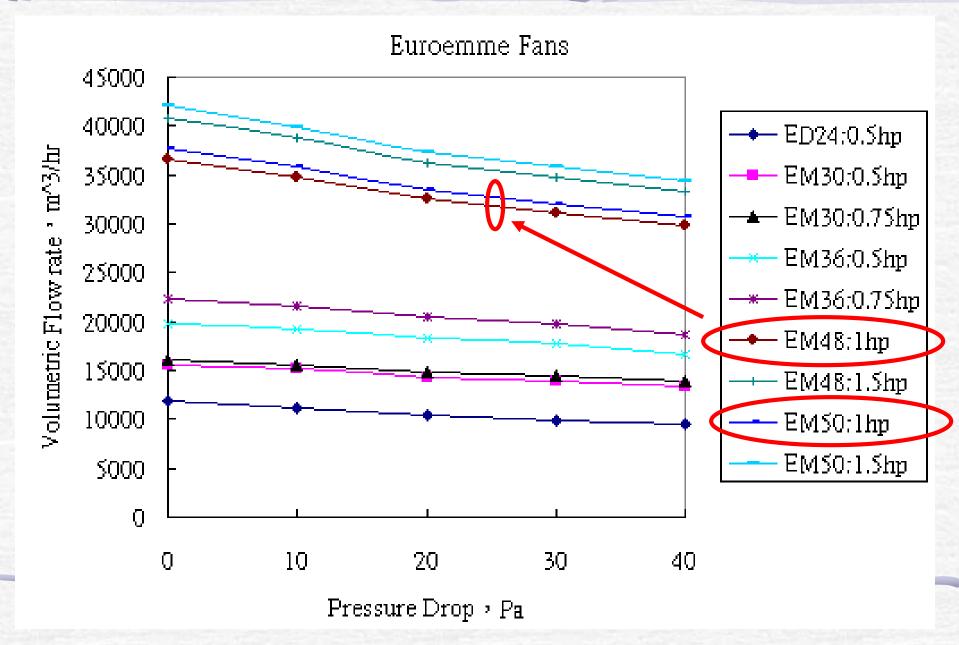
CELdek pad


$$Eff = 76.055 + 2.909 * V - 17.414 * V^2$$

Excelsior pad


Trumbull, et al. (1986)

Thickness of the pads were not mentioned. 10 cm?


## Pad efficiency at various facing velocity and thickness



# Pressure drop at various facing velocity and pad thickness



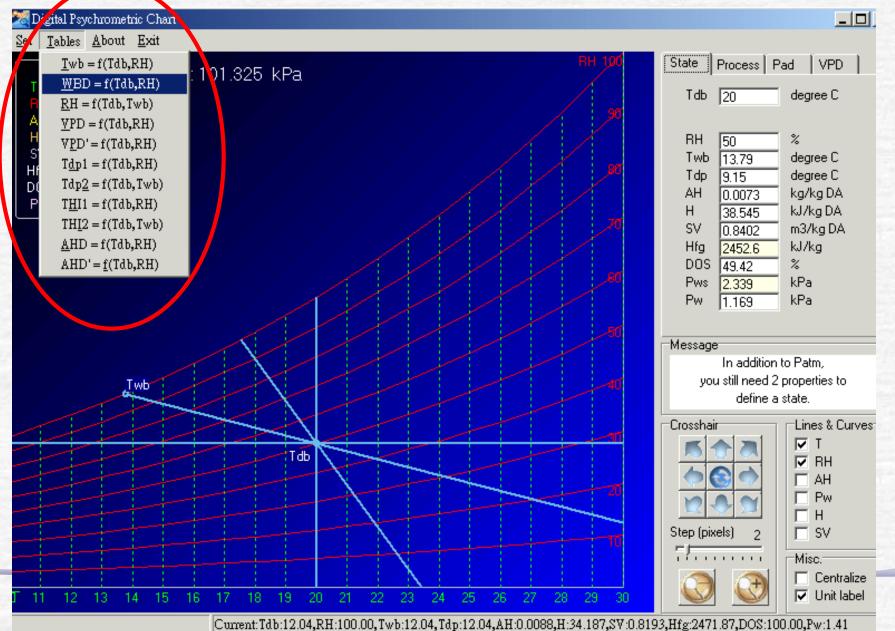
#### Fan curves of various models of



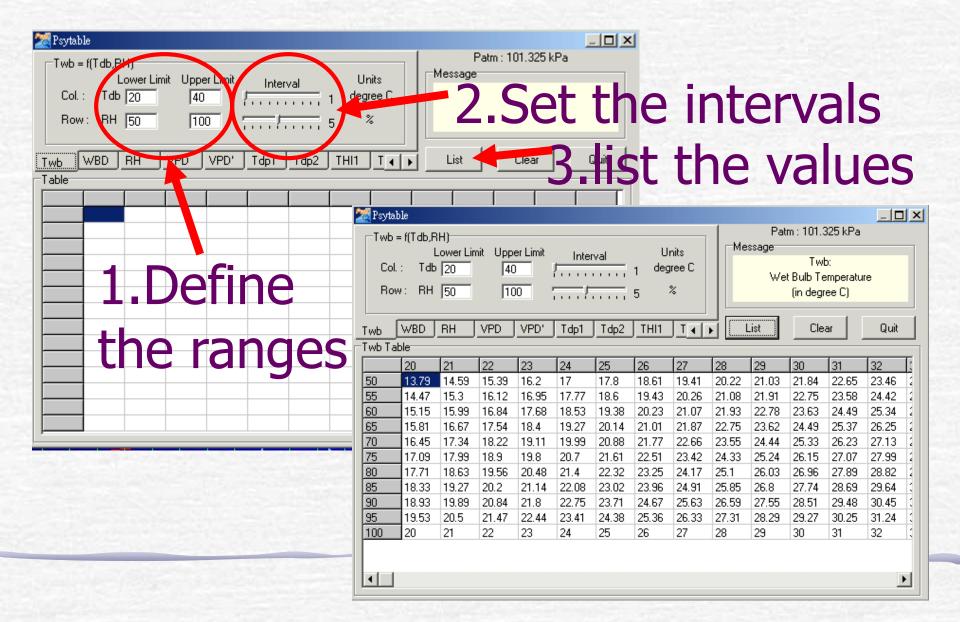
### Blow-off of water from the pad

- at 1 m/s for the Excelsior pad,
- at 1.6 m/s for the Kool-Cel pad and
- at 2 m/s for the CELdek pad

Trumbull, et al. (1986)


## Efficiency of nozzle (misting/fogging system)

$$\beta = 0.124 + 1.35 * 10^{-4} * P$$
Bottcher et al. (1991)


$$P = 64.888 \text{ ATM} \rightarrow \beta = 100\%$$

Considering some head loss and friction loss, 70 ATM (70 kg/cm<sup>2</sup>) was used in my research.

### Handy Tables



#### User friendly 3-step design in PsyTable



## Twb = f(Tdb, RH)

|            |     | 20    | 22    | 24    | 26    | 28    | 30    | 32             | 34    | 36             | 38    | 40    | 42    | 44    |
|------------|-----|-------|-------|-------|-------|-------|-------|----------------|-------|----------------|-------|-------|-------|-------|
|            | 50  | 13.79 | 15.39 | 17    | 10.01 | 20.22 | 21.04 | 20.40          | 25.00 | 20.13          | 20.30 | 30.04 | 31./  | 33.38 |
| <b>/</b> [ | 55  | 14.47 | 16.12 | 17.77 | 19.43 | 21.08 | 22.75 | 24.42          | 26.09 | 27.78          | 2947  | 31.18 | 32.89 | 34.62 |
| E          | 30  | 15.15 | 16.84 | 18.53 | 20.23 | 21.93 | 23.63 | 25.34          | 27.06 | 28.79          | 30.53 | 32.28 | 34.04 | 35.81 |
| E          | 35  | 5.81  | 17.54 | 19.27 | 21.01 | 22.75 | 24.49 | 26.25          | 28.01 | 29.78          | 31.56 | 33.35 | 35.16 | 36.97 |
|            | 70  | 6.45  | 18.22 | 19.99 | 21.77 | 23.55 | 2 33  | 27.1           | 28.93 | 30.74          | 32.56 | 34.39 | 36.24 | 38.09 |
|            | 75  | 7 09  | 18.9  | 20.7  | 22.51 | 24.33 | 2 15  | <b>2 /</b> .9: | 9.83  | 31.67          | 33.53 | 35.4  | 37.28 | 39.17 |
| 8          | 30  | 7.7   | 19.56 | 21.4  | 23.25 | 25.1  | 26.96 | 28.82          | 30.7  | 32. <b>7</b> 9 | 34.48 | 36.39 | 38.3  | 40.23 |
| 8          | 35  | 8.33  | 20.2  | 22.08 | 23.96 | 25.85 | 27.74 | 29.64          | 31.56 | 37.48          | 35.41 | 37.35 | 39.3  | 41.26 |
| 9          | 30  | 18.93 | 20.84 | 22.75 | 24.67 | 26.59 | 28.51 | 30.45          | 32.39 | <b>4</b> .35   | 36.31 | 38.28 | 40.27 | 42.26 |
| 1          | 35  | 19.53 | 21.47 | 23.41 | 25.36 | 27.31 | 29.27 | 31.24          | 33.21 | 35.2           | 37.19 | 39.2  | 41.21 | 43.24 |
| 1          | 100 | 20    | 22    | 24    | 26    | 28    | 30    | 32             | 34    | 36             | 38    | 40    | 42    | 44    |

RH (50 - 100%) and Tdb  $(20 - 44 \, {}^{\circ}\text{C})$ 

### RH = f(Tdb,Twb)

|    | 120          | 22    | 24     | 26                 | 28    | 30    | 32    | 34    | 36     | 38           | 40    | 42    | 44    |
|----|--------------|-------|--------|--------------------|-------|-------|-------|-------|--------|--------------|-------|-------|-------|
| 20 | 100          | 82.63 | 100.02 | ) 57.01<br>; 51.01 | 40.01 | 20.00 | 22    | 27.14 | 22.14  | 17.03        | 14.25 | 11.17 | 8.55  |
| 22 | N/A          | 100   | 83.49  | 70.48              | 59.48 | 50.13 | 42.16 | 35.35 | 29.52  | <b>4</b> .52 | 20.24 | 16.57 | 13.42 |
| 24 | I/A          | N/A   | 100    | 84.34              | 71.84 | 61.18 | 52.06 | 44.23 | 37.49  | 31.69        | 26.69 | 22.38 | 18.67 |
| 26 | <b>1</b> 1/A | N/A   | N/A    | 100                | 85.17 | 73.11 | 62.75 | 53.83 | 46.12  | 39.45        | 33.68 | 28.67 | 24.34 |
| 28 | N/A          | N/A   | N/A    | N/A                | 100   | 85.98 | 74.3  | 64.21 | 55.45  | 47.85        | 41.24 | 35.49 | 30.48 |
| 30 | NVA          | N/A   | N/A    | N/A                | N/A   | 100   | 86.78 | 75.43 | 65.56  | 56.95        | 49.44 | 42.88 | 37.13 |
| 32 | N /A         | N/A   | N/A    | N/A                | N/A   | N/A   | 100   | 87.56 | 76 49  | 66.81        | 58.33 | 50.89 | 44.36 |
| 34 | N/A          | N/A   | /A     | N /Δ               | N/A   | N/A   | N/A   | 100   | 8/1.32 | 77.49        | 67.96 | 59.58 | 52.19 |
| 36 | N/A          | N/A   | Α      | N/Δ                | N/A   | N/A   | N/A   | N/A   | 00     | 89.03        | 78.39 | 68.99 | 60.68 |
| 38 | <b>1</b> /A  | V/A   | m/A    | HAA -              | N/A   | N/A   | N/A   | N/A   | N/A    | 100          | 89.67 | 79.18 | 69.87 |
| 40 | N/A          | N.A   | N/A    | N/A                | N/A   | N/A   | N/A   | N/A   | N/A    | N/A          | 100   | 90.19 | 79.82 |
| 42 | N/A          | N/A   | N/A    | N/A                | N/A   | N/A   | N/A   | N/A   | N/A    | N/A          | N/A   | 100   | 90.57 |
| 14 | N/A          | N/A   | N/A    | N/A                | N/A   | N/A   | N/A   | N74   | N/A    | N/A          | N/A   | N/A   | 100   |

Twb (20 – 44 °C) and Tdb (20 – 44 °C)

### WBD = f(Tdb,RH)

|     | 20   | 22   | 24   | 26           | 28          | 30   | 32   | 34   | 36   | 38   | 40   | 42   | 44    |
|-----|------|------|------|--------------|-------------|------|------|------|------|------|------|------|-------|
| 50  | 6.21 | 6.61 | 7    | 7.39         | 7.78        | 8.16 | 8.54 | 8.91 | 9.27 | 9.62 | 9.96 | 10.3 | 10.62 |
| 55  | 5.53 | 5.88 | 6.23 | 6.57         | 6.92        | 7.25 | 7.58 | 7.91 | 8.22 | 8.53 | 8.82 | 9.11 | 9.38  |
| 60  | 4.85 | 5.16 | 5.47 | 5.77         | 6.07        | 6.37 | 6.66 | 6.94 | 7.21 | 7.47 | 7.72 | 7.96 | 8.19  |
| 65  | 4.19 | 4.46 | 4.73 | 4.99         | 5.25        | 5.51 | 5.75 | 5.99 | 6.22 | 6.44 | 6.65 | 6.84 | 7.03  |
| 70  | 3.55 | 3.78 | 4.01 | 4.23         | 4,45        | 4.67 | 4.87 | 5.07 | 5.26 | 5.44 | 5.61 | 5.76 | 5.91  |
| 75  | 2.91 | 3.1  | 3.3  | <b>//</b> // | <b>3</b> 57 | .85  | 4.01 | 4.17 | 4.33 | 4.47 | 4.6  | 4.72 | 4.83  |
| 80  | 2.29 | 2.44 | 2.6  | V.V          |             | 3.04 | 3.18 | 3.3  | 3.41 | 3.52 | 3.61 | 3.7  | 3.77  |
| 85  | 1.67 | 1.8  | 1.92 | 2.04         | 2.15        | 2.26 | 2.36 | 2.44 | 2.52 | 2.59 | 2.65 | 2.7  | 2.74  |
| 90  | 1.07 | 1.16 | 1.25 | 1.33         | 1.41        | 1.49 | 1.55 | 1.61 | 1.65 | 1.69 | 1.72 | 1.73 | 1.74  |
| 95  | 0.47 | 0.53 | 0.59 | 0.64         | 0.69        | 0.73 | 0.76 | 0.79 | 0.8  | 0.81 | 0.8  | 0.79 | 0.76  |
| 100 | 0    | 0    | 0    | 0            | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

Wet Bulb Depression is the limit of evaporative cooling methods.

### **Evaporative cooling Methods**

- Pad and Fan system
- Spraying
- Misting
- Fogging
- Multi-Net Fogging and Fan system