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Sensor networks have been used for a
variety of applications that include habi-
tat/temperature monitoring, industrial
sensing and battlefield awareness.
However, many highway and traffic
applications have not been tapped: pri-
marily sensor networks for highway
and traffic algorithms that alleviate
generic problems such as highway con-
gestion. This is due to the fact that sen-
sor network technology is a very recent
development. Since sensor networks
are relatively new, not many applica-
tions have been explored in depth. 

Utilizing the new generation of
TinyOS micaboard mote sensors devel-
oped at the University of California-
Berkeley, this article will focus on how to
achieve the best possible data results
from sensor network application and
setup for traffic/highway goals. How to
use Sensor-Network Graphs for optimal
placement of sensors in a network so as
to minimize work and to achieve the best
possible, and most accurate, signal-
strength localization measurements will
also be a primary focus. Also, discussed
will be a method that optimizes the trade-
off between energy and accuracy using a
variety of Activation Policies. Finally, sim-
ulations and distancing experiments of
indoor and outdoor data are provided to
encourage similar sensor work.

A brief history & initial 
transportation applications

Initially, the application and use of
small-sized, low time-constant and high
accuracy sensors were dominated by
microwave detectors utilizing the
Doppler Effect in the microwave range.
According to Descamps et al, X and K
band microwave Doppler sensors with
printed antennas—using hybrid and
Gallium Arsenide (GaAs) monolithic
technologies—were developed for use
strictly on cars and in guided trans-
portation systems, mainly subways and
railways. They were not only devoted
to speed and distance measurements,
but also to safety applications such as
anti-locking braking systems, anti-skat-
ing systems and active suspensions. 

The accuracy of these sensors actual-
ly depended on the nature of the
ground. As a result, they were more or
less accurate according to whether the
ground was covered with snow, ice or
water/rain. GaAs MEtal Semiconductor
Field-Effect Transistor (MESFET) tech-
nology was chosen primarily because it
was conducive to high-performance
and low-cost sensors for mass-produc-

tion. Using the Doppler-shift principle,
microwave technology senses moving
objects by first sending a signal toward
the roadway. When a vehicle passes
through this pattern, some of the energy
is reflected back to the unit at a different
frequency (Clippard et al). This applica-
tion of sensor networks can be used to
detect mobile/moving tar-
gets such as vehicles and
mopeds, especially
approach-only and
depart-only objects.
The TinyOS sensor
mote is based on a similar tech-
nology.

The TinyOS hardware
The primary sensor technolo-

gy of interest here is TinyOS
micaboard motes; miniaturized

sensors that utilize TinyOS, an event-
based operating environment written in
code similar to stylized C. They are com-
piled with NesC, a custom compiler
often used with other embedded
devices. The essential components of a
small, 1.5”x 1.5”x 0.5”micaboard mote
are: 1) the mote/sensor itself (that runs
off a battery-supply), and 2) the sensor-
board, a configurable sensor that allows
communication and sensing between
motes (shown in Fig. 1). Mica motes also
use an ATmega103L micro-controller
with a 4MHz CPU cycle frequency. 

Wireless networking and communi-
cation between motes is done using a
RFM TR1000 radio transceiver, which
operates at the unique radio frequency
of 916.50MHz. Mote communicate with
one another by sending software pack-
ets through this transceiver/antennae.

In terms of software, TinyOS code is
downloaded from a PC onto the mote’s
8kb flash memory (with 4KB of Static
Random Access Memory (SRAM) as data
memory) to run a variety of communica-
tion-based programs (sending packets,
retrieving data, and turning on/off Light
Emitting Diodes (LEDs)). As can be
probably inferred, many TinyOS motes
can easily be formed into a viable and

reliable sensor network, with the trans-
mission of packets carrying information
(signal strength, location) being the
transmitted data of interest.

With the mote’s RF wireless transceiv-
er (having three LEDs for output), the
analog-data interface and magnetometer
located on the mica sensorboard can be

used to detect
magnetic materi-
als, such as cars. 

Magnetic uses
According to

researcher Sinem
Coleri, we know
that we can only
detect cars—mag-
netic material—
with speeds in a

specific interval; thus, solutions to this
problem include adjusting the sampling
rate high enough to detect the highest
speed cars, and to consider the
“absolute” magnetic field to detect
lower speed cars. 

Theories utilizing tree construction,
node graphs and traversal algorithms
optimize situations involving the
micaboard mote “Base Station” in trying
to detect cars in parking lots.
Fortunately, for long-term monitoring
applications such as these, power con-
sumption for these mica sensors is not
that much of a concern. In peak mode,
the mote hardware consumes 19.5 mA,
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Fig. 1  The Mica Sensorboard
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running about 30 hours on a battery. In
inactive mode, the lifetime of the bat-
tery is nearly one year.

The primary goal of utilizing TinyOS
sensor networks is to use signal
strength readings to infer the distance
between the motes. According to
Whitehouse et al, the equation for sig-
nal strength is provided by:

y = (Clog(x) + v)

y being signal strength, x a distance
vector, and v, some minor Gaussian
noise. C is a mathematical parameter
that can be optimized depending on a
variety of constraints. In addition, a
radio antenna can be attached to the
micaboard mote (via soldering) so as to
improve ranging and Radio Frequency
(RF) communication (Fig. 2). The
attachment of this radio helps greatly in
calculating the signal strength through
the formula just provided. 

The utilization of this signal-
strength/distancing data has a two-fold
benefit in highway applications and
analysis: 

1. Surveillance metrics: The first
usage is utilizing sensor detection in

surveillance metrics. Varaiya and
Coifman in their work using video-
traffic detectors demonstrated its use-
fulness. The crux of their research
essentially involves forming a vehicle
reidentification algorithm for consecu-
tive detector stations on a freeway,
where “downstream” and “upstream”
detector measurements were matched
with a reproducible vehicle measure-
ment, or vehicle signature. The city of

Ann Arbor, Michigan followed a similar
trend and has also utilized sensors
(Microwave Sensors’ Model TC-20) to
eliminate traffic problems such as grid-
lock in the busy streets of its Central
Business District by monitoring
upstream/downstream data. 

2. Data for PeMS: A second use is
monitoring traffic with sensors serving
as information/data in the “front-end
processors” (FEP). These processors
retrieve data from freeway loops every
30 seconds in the Performance
Measurement System (PeMS), a freeway
performance measurement system for
all of California, devised by the PATH
research group led by Varaiya et al.
Also, a wide variety of personnel (traffic
engineers, managers, planners, travel-
ers, researchers), depend on the real-
time detector data provided by PeMS to
form important operational decisions. 

Sensor-network graphs 
The optimal placement of sensors for

getting the best possible and most accu-
rate measurements is critically important
to data transmission in sensor networks.
The first important consideration is the
minimization of work done. In order to
minimize the amount of work/power

we consume, we
want to minimize
the amount of data
transferred in a net-
work. A base sta-
tion, or “sink”
node, is a sensor
node that takes as
input detections
from a variety of
regions. It then
generates output
whenever a target,
such as a vehicle,
has been detected
in any of the
regions within a
given time window.
The problem,
therefore, is essen-
tially finding an

optimal mapping of sensor nodes that
minimizes the amount of data trans-
ferred among the regions to the base
station. 

Bonfils and Bonnet from the
University of Copenhagen, Denmark
propose a decentralized and adaptive
solution to the sensor-placement prob-
lem. Decentralized in the sense that
each node should only maintain infor-
mation about close-by or local nodes;
Adaptive in the sense that operators
and detections between nodes can be
altered at any time, in an ad-hoc fash-
ion. Their theory is centered around the
notion of “cost,” a function of the
amount of data received and produced
by a node. The cost is estimated from a
set of nodes that receive data from an
active node that transmits data. Of
course, minimization of cost is the goal.
They also define an oriented sensor
network graph (SNG) as follows:

a)  : a set of sensor nodes. In this
set, p and q are elements of ζ. 

b)  : a set of communication links
(edges) that connect the nodes in ζ. 

c)  (p, q) is a link between nodes p
and q, an element of λ. 

d)  wpq: a positive integer weight
associated with the link (p, q) of λ. 

The “cheapest” path between p and
q (the path with the minimal cost) is
denoted by Pmin(p, q). Where a path P
= {(p, x), (x, r), …, (y, s), (s, q)} is
between nodes p and q, and the cost is
defined to be: where e _ P. 

A graph traversal algorithm
The standard placement problem is a

task assignment problem that is known
to be NP-complete in the literature. The
standard placement problem is also
centralized and depends on information
from “global” nodes. However, the
solution proposed by Bonfils and
Bonnet is decentralized and local. Their
algorithm progressively refines the
placement of operators (nodes) towards
an optimal placement. A node known
as the “active node” is defined to be a
node where a particular operation (data
transmission) is executed. The proce-
dure of the algorithm is as follows:

1) Evaluate the cost incurred by the
execution of the operation at the
active node. 

2) Estimate the cost for the alterna-
tive assignments of the operation (the
neighboring sensor nodes). 

3) Compare the cost of the active
node with that of the alternative neigh-
boring nodes. The goal is to find a min-

Fig. 2  The Mote with a radio antennae
soldered on.

Fig. 3  Percent and Absolute Error Plots for indoor data
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imal cost from the setup. 
4) Once the node with the lowest

cost is found, transfer the operation to
that node. This node becomes the new
active node.

From this algorithm, therefore, we
should be able to rig up a sensor net-
work configuration on highways using
TinyOS sensors that minimize the
amount of data being transmitted. We,
thus, minimize the power consumed.

However, sensor network topology
is one of the main limitations to this
algorithm. In the specific case of high-
ways and traffic, if sensors were placed
at different geographical heights, i.e.
some on a mountain/building, while on
the roadway level, data transfer would
exhibit non-linear behavior. The ideal,
and not very-realistic, case is to have
data transferred along straight lines, all
on the same topographical surface. Cost
would then be simplified to a linear
and directly proportional function of
distance between nodes. Therefore, we
desire the flattest sensor network topol-
ogy available to simplify and optimize
data transmission as much as possible.
Fig. 5 shows Outdoor Percent and
Absolute Error measurements taken
from the TinyOS motes utilizing the
aforementioned placement strategies.
The flattest possible outdoor topogra-
phy was used, and the Received Signal
Strength Information (RSSI) MATLAB
data confirmed the accuracy of this
placement (Fig. 6).

The utilization of the graph-traversal
theory also has significant application to
detecting cars in a parking lot. In that
particular case, the Base Station node
serves as the “active node” and the data
it wishes to transmit is a variety of
packets that include ID and location.
The nodes in the surrounding locations
can use this ID data to determine the
relative distances from one another and
from the Base Station. The placement of
the nodes so as to minimize data trans-
mission can be done with the afore-
mentioned algorithm. However, in an
indoor parking-lot setting, the data may
not be as accurate as data taken out-
doors. Figures 3 and 4 show data taken
from TinyOS motes placed indoors.

Activation policies for energy
conservation

Design and engineering considera-
tions in the placement of sensors are
critical so as to maximize correct data
and minimize error. For energy-efficient
localization and tracking of mobile tar-

gets, such as cars using
wireless sensor networks,
gains in energy-savings
come at the expense of
increased accuracy in track-
ing, according to USC
researchers Pattem, Poduri
et al. Therefore, a direct
tradeoff between
energy/power consumption
and the accuracy in which
we can track objects or
measure data can be imme-
diately observed. 

An intuitive way to save
energy in nodes is to only
turn on a subset of sensor
nodes in a network, essen-
tially, only the ones that are
required. However, informa-
tion provided by a small subset of nodes
leads to an increased uncertainty in the
sensed regions, i.e. there are less data
points to confirm location and distance.
Pattem, Poduri et al analyze these ener-
gy-quality tradeoffs by first proposing a
quality metric and an energy metric, and
then using those to develop four main
tracking strategies. These strategies are
utilized and simulated, and the results
provide insight into the aforementioned
tradeoffs:

1) Naive Activation (NA): All nodes
in the network are in tracking mode all
the time. Perhaps the worst energy effi-
ciency, yet it serves as a useful baseline
for comparison. Assuming N nodes, all
N nodes are on, and the Power for the
entire network is P = NS_ where S is
the node sensing-range and a the
sensed signal’s decay exponent.

2) Randomized Activation (RA): Each
node is on with a probability p. A frac-
tion of Nodes, pN, will be on, and the
network’s Power is P = pNSa. 

3) Selective Activation based on pre-
diction (SA): Only a small subset of
nodes is in tracking mode at any given
point in time. They are intelligent in that
they also predict the “next” position of
the mobile target (e.g. car) and hand
over the tracking to nodes that are best
placed to track the target in this “next”
position. If we define Xp to be the pre-
dicted target position, then the sensor
nodes within a radius Sp around Xp are
in tracking mode at any given point in
time. If ρ is the density of sensor deploy-
ment, then π(Sp)2ρ is the number of
nodes that are on, and the collective
Power is P = π(Sp)2ρSa. 

4) Duty-cycled Activation (DA): The
entire sensor-network periodically turns

off and on with a regular duty cycle.
One interesting feature of DA is that it
can be used in conjunction with any of
the other activation strategies (SA, NA,
RA). TD is the period of the cycle, tON
is the on-time, and nsU be the average
number of tracking sensors in the
accompanying activation strategy (SA,
NA or RA) U. Then the number of
modes that are on is = (nsU tON) / TD
and the collective Power is then

P =  (nsU tONSa) / TD .
The variety of simulations Pattem, et

al run include simulation of a virtual
large scale sensor network on a 200 x
200 unit area with a random placement
of sensors and a density of sensor
deployment to be ρ = 1 sensor/unit
area (a total of 40,000 nodes). For naive
activation, the tracking error decreases
as the sensing range S increases. The
same happens with random activation,
at varying values of p. If p is decreased
for random activation, then the tracking
quality is also significantly decreased.
For selective activation, the tracking
error was quite high for Sp = S.
Selective activation with a Sp = 1.5S per-
forms nearly as well as naive activation. 

When naive activation, random acti-
vation and selective activation are all
compared together, the dominating and
best strategy appears to be selective
activation with a fairly high Sp. It essen-
tially is the best in terms of the best
tradeoff between low-error as well as
low energy/power expenditure.
Selective activation was also shown to
have four orders of magnitude savings
in energy compared to naive activation
or random activation, with optimal set-
tings. However, a feasible value of Sp

must be chosen, and it depends on the
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Fig. 4  RSSI Density Plot for indoor data

Indoors: Density Plot of Distance Estimates: 
RSSI: 43.6981% error, 159.5373cm error
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mobility of the target observed. 
With duty-cycled activation, the best

out of the three (selective activation,
random activation or naive activation)
must be used to obtain optimal results.
In this case, if selective activation is
used in conjunction with duty-cycled
activation, then we have the best possi-
ble tracking strategy. The combined
strategy is, of course, duty-cycled selec-
tive activation. It can be appropriately
adjusted with alternating values of  tON
or TD. Those two variables essentially

serve as “tuning knobs” of sorts.
From the previous analysis of tracking

strategies, it can be inferred that the opti-
mal strategy for highway and traffic appli-
cations is also perhaps selective activa-
tion. It would be best if all the TinyOS
micaboard sensors could be equipped
with intelligent packet-routing capabilities

that would allow them to communicate
the “next” area/location of where a car is
headed. Once the car heads to that “next”
location, the micaboard motes in the area
“left” by the car would have a mechanism
to turn themselves off, while the motes in
the “next” area would be able to turn
themselves on. This would propagate
successively as a sequence of circles with
radius Sp to achieve optimal measurement
accuracy and minimal tracking error.

Also, power and energy consumption
would be in turn minimized. For this

setup of successive cir-
cles, it is best perhaps
to utilize an omni-direc-
tional ultrasound mica-
board, in order to sense
the mobile target in all
directions. If we use
this along with a duty-
cycled activation, and
adjust the “tuning
knobs” of  tON or TD
accordingly, then we
can be sure we are
obtaining the best pos-
sible tradeoff between
tracking error and ener-
gy/power expenditure. 

In summary
Sensor networks

have a wide variety of
applications, from moni-

toring environmental data, to observing
natural phenomena, and from various tar-
get tracking to even prevention of terrorist
attacks according to Tubaishat et al. By
embracing recent sensor network technolo-
gy, many practical applications, both high-
way and non-highway related, can be dis-
covered. Further work and research for

highways is encouraged.
Other potential developments
include prevention of car colli-
sions, pedestrian safety and
lane-maintenance. All are very
interesting sensor-network
research topics that will
improve the safety and effi-
ciency of our highways for the
future. 
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Fig. 6  RSSI Density Plot for outdoor data

Outdoors: Density Plot of Distance Estimates: 
RSSI: 24.0407% error, 118.5437cm error

True Distance (cm)

E
st

im
at

ed
 D

is
ta

nc
e 

(c
m

)

0 200 400 600 800 1000 1200

1200

1000

800

600

400

200

0

Fig. 5  Percent and Absolute Error Plots for outdoor data
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