
THE INTEL® MOTE PLATFORM:
A BLUETOOTH*-BASED SENSOR NETWORK

FOR INDUSTRIAL MONITORING

Lama Nachman, Ralph Kling, Robert Adler, Jonathan Huang, Vincent Hummel

Corporate Technology Group
Intel Corporation

Santa Clara, CA, USA

* Bluetooth is a trademark of its proprietor and used by Intel Corporation under license. Other names and brands may be claimed as the

property of others.

Abstract--The Intel Mote is a new sensor node platform motivated
by several design goals: increased CPU performance, improved
radio bandwidth and reliability, and the usage of commercial off-the-
shelf components in order to maintain cost-effectiveness. This new
platform is built around an integrated wireless microcontroller
consisting of an ARM*7 core, a Bluetooth radio, SRAM and FLASH
memory, as well as various I/O options. The Intel Mote software
architecture is based on an ARM port of TinyOS. Networking and
routing layers have been created on top of the TinyOS base to
provide Bluetooth-based multi-hop functionality. The network is
self-organizing on startup and has mechanisms to repair failed links
and circumvent failed nodes. A reliable high bandwidth streaming
transport layer has also been created.

The Intel Mote was deployed in an equipment monitoring

application using industrial vibration sensors. This application was
chosen since it benefits from the increased platform capabilities and
network bandwidth of the Intel Mote platform. The paper presents a
detailed analysis of the observed network operation, packet transfer
rates, and power consumption.

Keywords—wireless sensor networks; Intel mote; condition

based monitoring; Bluetooth motes

I. INTRODUCTION

Sensor networks have been built for a number of different
applications and environments. Traditionally, motes have been based
on 8-bit microcontrollers such as the Atmel*-128 and single channel
radios in the 300-900 MHz range [1]. These platforms worked well
for initial deployments that were focused on environmental
monitoring [2]. Typical sensors used by those applications required
fairly low bandwidth for measuring temperature, humidity or
barometric pressure data. The sensor network hardware was
sufficient to handle the requirements of such sensor inputs.

Increasingly, sensor networks are being deployed in industrial

monitoring solutions. This is a new application area with a number
of different requirements. Some of the desired measurements, such
as vibration and acceleration, require higher bandwidth and longer
sampling periods. This in turn necessitates platforms that can acquire

and transmit larger data streams efficiently. In addition, local CPU
computational capabilities can be used for data compression as well
as initial classification and analysis.

II. INTEL MOTE PLATFORM

The Intel Mote [3] was designed to address the above mentioned
application requirements by introducing a new platform design.
Further design goals included improved radio reliability, high level
of integration, and cost-effectiveness. An important aspect of the
platform design was to achieve increased performance while still
offering competitive battery life. To satisfy these requirements we
chose an integrated wireless microcontroller module from Zeevo*,
Inc. that incorporates an ARM7TDMI core and a CMOS Bluetooth
radio [4] [5]. Of particular concern was that the chosen module fully
supports the Bluetooth “scatternet” operation in order to be able to
build mesh networks. In addition, the hardware needed to support
the Bluetooth low power modes as well as an overall platform sleep
mode.

The Intel Mote is built on a 3x3cm circuit board that integrates

the Zeevo module, a surface-mount 2.4GHz antenna, various digital
I/O options using stackable connectors and a multi-color status LED.
The heart of the platform is the integrated 12MHz CPU, BT Radio,
64KB SRAM, 512KB FLASH module that is contained within an
11x13mm BGA package. The connectors expose 2 UART ports (one
without flow control), USB client, GPIOs and power. The radio’s
range is approximately 30 meters with the built in antenna, however,
we were able to extend the range up to a 100 meters using an omni-
directional external antenna. By simply removing the two matching
network components, an ultra-small coaxial connector (Hirose
U.FL) can be soldered in their place to allow for an external antenna
solution.

When choosing an operating system environment for the Intel

Mote we decided to use TinyOS [6]. It provides the basic
functionality needed for the intended applications and benefits from
a large and active user community. We therefore ported TinyOS to
the ARM architecture and wrote a set of platform drivers that make
the various platform I/O components available to the application
programmer. The OS and radio stack leave about 11 KB of free
SRAM to be used by the application.

0-7803-9201-9/05/$20.00 ©2005 IEEE 437

In order to facilitate sensor network research, the Intel Mote was

designed as a modular platform. This allows custom sensor boards,
battery boards, interface boards and debug boards to be attached to
the system in a flexible manner. As shown in Fig. 1, this flexibility is
provided via a set of pass-through connectors on the main board.

Figure 1. Intel Mote platform

III. NETWORK STACK

A significant difference between the Intel Mote networking stack

and the networking stacks of previous motes is that the Intel Mote
network is built on top of a point-to-point Bluetooth baseband. In
contrast, most other mote platforms broadcast on a common
communication channel using a CSMA protocol [7]. As a result, we
implemented new network formation and routing algorithms adapted
to connection oriented radios.

In order to support the data integrity requirements of the above

mentioned applications we created a number of new communication
components on top of TinyOS that are optimized for the Bluetooth
master/slave and piconet/scatternet operation. The network is self-
organizing on startup by employing a distributed node discovery and
connection procedure. After basic network establishment, routing
information is exchanged between the nodes. We also provide
automatic network repair in case of node or link failures and a low
power mode that maintains network connectivity.

A. Network Formation

We have implemented a scatternet formation algorithm which
creates a network with a tree topology using a pre-determined node
at the root of the tree. This is a simplified version of the algorithm
described in [8]. At initialization each node randomly enters either
an inquiry scan or inquiry state. Each node then alternates between
these two states until it discovers another node or another node
attempts to form a connection with it. When a connection is made,
the two nodes exchange information including a flag which indicates
whether each node has a route back to the root node. If neither node
has a path back to the root, the connection is broken and both nodes
resume searching.

Any node connected directly to the root node will learn that it has a
path back to the root node during the initial handshake. For every
new connection, the node initially connected to the root node
becomes the master in the local piconet and the originally free node
becomes the slave. After a node has joined the tree, it stops
performing the inquiry operation and remains in an inquiry scan

state. By stopping the inquiry process for nodes already in the tree
connected to the root, this algorithm avoids creating loops in the
tree. After the root node connects with another node, all other
connections are initiated by unconnected nodes called free nodes.
Free nodes continue the process of alternating between inquiry and
inquiry scan states. When a free node discovers another node, it
determines whether the other node has a path to the root node. If it is
not connected the free node disconnects and continues its search. If
the other node is connected, the free node joins the other node’s
piconet as a slave. This maintains the tree topology for the network
in which each master in every piconet is closer to the root than its
slaves.

B. Network Routing and Repair

For the topologies discussed in this paper, a simple routing
algorithm is used to maintain a path from the root to each node and
from each node back to the root. The root periodically sends out a
routing beacon to each of its slaves. This beacon continues to flow
down the tree, with each master transmitting it to each of its slaves.
As the beacon flow progresses each node caches the next hop back
to the root and echoes a route reply back to the root node.
Intermediate nodes snoop these replies and refresh their route tables
for descendent nodes.

The lower level Bluetooth stack periodically exchanges

maintenance packets across active links. When a link fails and these
maintenance packets are not received for a pre-determined period of
time, the lower level stack breaks the connection and signals to the
upper level that a connection was dropped. The scatternet formation
algorithm receives these signals and updates its view of the network
accordingly. If a master receives a signal indicating that it lost a link
to a slave, it updates its routing table to indicate that the slave and its
descendants are no longer reachable across that link. If a slave
receives a signal indicating that it lost its connection to its master, it
assumes that it can no longer reach the root of the tree and returns to
the free node state in which it randomly alternates between the
inquiry and inquiry scan states. It also disconnects from all of its
slaves so they can also search for a new path back to the root node.

C. Reliability Protocol

We have defined an end-to-end reliable transport protocol to
support reliable transmission of large datagrams in sensor networks.
This was needed for the vibration sensing application described
below, as each collection required the reliable transmission of a 6KB
buffer, which does not fit into even the largest Bluetooth packet. A
major requirement of this protocol was reduction of communication
overhead, as well as memory requirements in each node. The data is
divided into multiple fragments which may be transferred across
multiple hops, may arrive out of order, or may be dropped by
intermediate nodes. To be able to support different link types, the
fragment size is negotiated in the connection setup process. This
protocol relies on the receiver to periodically send a list of missing
fragments and controls a fixed size sliding window. Since the
receiver is aware of the total datagram size, it is able to verify the
receipt of the complete datagram. The sender will not retransmit any
fragments until it receives a NACK packet. It will only retransmit
the fragments that the receiver has requested. The protocol has three
phases, a connection setup, a data transfer and a final
acknowledgement phase.

2.4GHz antenna Stackable
connectors

(top &
bottom)

Multicolor status
LED

ARM core,
SRAM,

FLASH,
BT radio

0-7803-9201-9/05/$20.00 ©2005 IEEE 438

D. Low Power Mode

We implemented a low power protocol to enable the Bluetooth
links to be put in low power mode while keeping the network in the
connected state. This is extremely useful in cases where the network
response time is required to be in the order of minutes. When the
root node decides to put the network into a sleep state, e.g., after a
collection cycle, it issues a “sleep” command to each of its slaves.
Those store the sleep flag and also retransmit this command to each
of their slaves, hence propagating it one level at a time down the
tree. Once the sleep command reaches a leaf node, it sends an ACK
back up the tree to its master. When a master receives an ACK from
all of its slaves, it places the Bluetooth links to each of them in
“hold” mode for a time period Thold, currently set to 20 seconds, and
sends an ACK to its master. These ACKs are propagated upwards
until they reach the root node. Once a node has all its connections in
hold mode, it sleeps itself for Thold. When Thold expires, the master of
each piconet checks the sleep flag, if it is still set, it puts all of its
slaves on hold again. Note that since a master puts all its slaves on
hold at approximately the same time, they also wake up
concurrently, hence enabling the master to wake up only once per
Thold interval to synchronize all its slaves.

When the cluster head decides to wake up the network for the

next data collection phase, it sends a “wake” command through the
network. Since all the connections are still maintained, the wake
command will be sent to the first level slaves once Thold expires,
causing them to reset their sleep flags. As a result, these nodes will
not attempt to put the links to their own (next level) slaves back in
hold mode. The process repeats, traversing one level of the tree
every Thold period. Once the wake command reaches the leaf nodes,
ACKs will be sent back up the tree, until they reach the root node
indicating that the network is now awake. As a result, the network
wake up time is approximately the tree depth * Thold.

IV. INDUSTRIAL EQUIPMENT MONITORING

Equipment health monitoring is a typical industrial application
that can benefit from a sensor network deployment. Currently,
sensors are attached to critical equipment, their readings are
manually collected and the data is analyzed off-line by computer.
The data needs to be collected and analyzed frequently enough to
proactively detect future equipment problems and perform
preventative maintenance. This can be very critical because shutting
down a factory to fix broken equipment can be very costly, in
addition to the possibility of losing some of the product in the
process. The benefits of using a wireless sensor network for an
equipment monitoring application are numerous: First, by
eliminating the labor intensive operation of manual data collection,
cost savings can be achieved. Second, the automation of such
repetitive tasks reduces the probability of human errors. Finally,
using a wireless solution, in particular when retrofitting existing
buildings, is significantly more cost-effective than using a wired
solution.

We have performed a test deployment of Intel motes in one of

Intel’s central utility buildings. This building supplies wafer
fabrication facilities with the resources needed for their operation.
Data from vibration sensors connected to water pumps, compressors
and chillers is regularly monitored. For ease of network management
and reduction of maximum hop counts, the sensor network is
divided into clusters. Each mote cluster has a head node that is
responsible for communication scheduling and power management.

It is connected to a line powered local “Stargate” gateway node [9]
via a serial link. All gateways are connected to a root gateway via an
802.11b network. Finally, the root is connected to a central server
that runs data analysis software. This test deployment was designed
as proof of concept for sensor networks in real industrial
applications and environments. In addition to the Intel Mote clusters,
we also had MICA2 based clusters deployed in the same building.
This enabled us to compare the features of the two platforms with
respect to this industrial monitoring application.

A. Experiment description

We deployed 3 Intel Mote and 3 MICA2 clusters. Each cluster
covered a set of equipment in separate sections of the building. The
cluster sizes (up to 10 motes per cluster) were dictated by the
location of the equipment. Each mote had about 5 sensors attached.
All motes were instrumented to log many vital networking stats
(data transfer delay, network formation overhead, packet
retransmissions, etc). The experiment lasted for 7 days and
generated significant statistics. The motes were configured to only
sleep for one hour between collections in order to heavily exercise
the network. All vibration data was successfully transferred via the
gateways to the backend server and imported into Rockwell Enshare
software for further analysis.

We have designed a custom sensor board to interface the Intel

Mote to Wilcoxon 786A vibration sensors. Much like the manual
method that this replaces, multiple sensors are connected to a single
sensor network node. The Intel Mote’s large amount of available
memory and high speed DMA-based UART enabled us to keep the
design simple and inexpensive. Each collection consisted of 3000
vibration samples, of 16 bits. We were able to fit a complete 6KB
buffer in the internal SRAM of the Imote. The A/D sampling rate
was 19.2KHz at 16 bits. The Intel Mote’s UART was used to
transfer the data from the sensor board at 460Kb/s. In the case of the
MICA2 sensor board, an external RAM buffer and a second
processor had to be added to the sensor board due to the limited
capability of that platform.

B. Network Formation Overhead

The network formation is initiated when the cluster head starts.
Since connections are maintained during the sleep phase, there is no
need to reestablish them before every collection cycle, hence the
network formation delay is amortized over many collection cycles.
The network formation phase remains in effect until either all the
motes are found or a timeout value is reached. For the purpose of
this experiment, we set the timeout value to 2 minutes. Over the one
week run, we had a total of 163 collection cycles. The cluster went
through the network formation phase only 13 times. Some of the
new network formations were caused by a special watchdog that
monitors network performance. The average network formation
delay for a 7-node cluster was 67 seconds, if we average over all
collection cycles we get a network formation overhead of 5.3
seconds per collection. This data is shown in Fig. 2.

0-7803-9201-9/05/$20.00 ©2005 IEEE 439

Network Formation Delay
(Overall average = 5.3 sec)

(Average over non-zero cycles = 67.1 sec)

0

20

40

60

80

100

120

140

0 50 100 150 200
Collection Cycle

N
et

w
or

k
Fo

rm
at

io
n

D
el

ay
 (s

ec
)

Figure 2. Network formation

C. Data Transfer Delay

Each mote transfers 3000 samples (6KB) of data per sensor using
the reliable transport protocol described above resulting in a total
data size of 30KB for all 5 sensors. The average transfer time for the
30KB of data is 88 seconds, with a standard deviation of 9s. By
comparison, the MICA2 average transfer time was more than 10x
that of the Imote, with a much larger spread as well. The number of
fragments needed to transfer the 30KB of data is 320 (maximum
fragment size is 94B), however, we see an average of 430 fragments
transmitted per collection, this amounts to about 34% retransmitted
packets. As expected, we observed that the average and variance in
the number of retransmitted packets increases with the node hop
count as shown in Fig. 3. We believe that most of this packet loss
was due to aggressive NACK timing and buffer overflows. When
we examined the number of fragments successfully received and
divided that by the total number of transmitted fragments, we found
that the loss rate is about 8.5%. This can be improved further by
tweaking the NACK timing and optimizing the lower layer to switch
faster between piconets.

Reliable Transport Fragments
(Average = 430 fragments)

300

400

500

600

700

800

0 1 2 3 4

Hop count of node

N
um

be
r o

f f
ra

gm
en

ts

pe
r m

ot
e

Figure 3. Reliable transport

D. Radio Performance

Two of the Intel Mote clusters had their cluster heads inside the
building whereas the sensor motes were connected to equipment
outside the building. The performance of these external clusters was

very similar to the internal one, despite having to go through walls
as well as longer hop distances. In addition, the performance of the
Imote clusters seemed much more consistent across the different
collection cycles compared to the Mica2 clusters. Fig. 4 shows the
cumulative distribution function of the data transfer time for a Mica2
and an Imote cluster over the total number of collection cycles. It
can be seen that the variance in the Imote performance is much less
than the Mica2.

0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

0 1000 2000
Transfer Time (Seconds)

Figure 4. Data Transfer Delay

To investigate the effect of physical distance on transmission

reliability, we performed a separate experiment: two nodes were
connected directly and the slave transmitted a 3KB buffer to the
master using the reliability protocol. The distance between the two
nodes was increased in steps of 3 meters. At each location, 8
transmissions of the 3KB buffer were performed. Fig. 5 shows the
min, max and average transmission times as a function of distance.
The average transmission time for distances smaller than 30m is
about 1.2 seconds. Since the sender is configured to send 100 byte
packets every 40ms, 1.2s is the minimum achievable transmission
time. As the distance is increased beyond 30m, we start seeing
longer transmission times, as expected. However, even at 60m, we
still get reliable transmissions (at the expense of higher power
consumption). The above experiments were performed indoors, in a
cubicle environment with people moving around and in the presence
of 802.11b networks. In all of these experiments we hardly see any
transport layer NACK packets sent, however, the transmission times
vary quite a bit. This is a result of the Bluetooth MAC layer retries.
As the link quality decreases, more packets fail the CRC check and
don’t get acknowledged. The link controller on the transmitter side
will retry these packets multiple times.

Mica 2 Cluster
Imote Cluster

0-7803-9201-9/05/$20.00 ©2005 IEEE 440

Transmission times versus distance (3KB)

0

5

10

15

20
0 12 24 36 48 60

Distance (meters)

Tr
an

sm
is

si
on

 T
im

e
(s

ec
on

ds
)

max
min
avg

nominal range (30 m)

Figure 5. Radio range

E. Current Consumption

We have measured the current consumed in the different phases
of operation. The following table shows the amount of current
consumed and time spent in each mode. Note that we assumed the
Imote radio is always on during an active cycle, this is a
conservative estimate (Imote with radio off consumes about 9 mA).
The table sets the sleep cycle to 1 hour to match the deployment. As
the collection frequency is decreased, the sleep current dominates
the current consumption. The battery solution that was used in this
deployment (4 C-cells) has a capacity of ~9100mAh at 6V nominal.
For this configuration, the resulting network lifetime is roughly 2
months. Since this deployment was a retrofit, supplying power
hookups to the motes was deemed too expensive by the facilities
team which might not be the case in new installations.

TABLE 1. Current consumption

Modes Isupply

[mA]
tcycle

[s]
Avg. Isupply

[mA]

Sleep mode 3.0 3600.0 2.53
Imote + radio 20.7 591.0 2.87
Imote+Sensor 54.6 75.5 0.97
Imote+Sensor+A/D 58.8 1.5 0.02
Total cycle - 4268.0 6.39

There are multiple lessons to take away from this experiment:

First, the current consumed by the sensor and board exceeds that of
the mote even in full power. Second, the current consumed to
perform a collection cycle was less than one tenth that of the MICA2
clusters, due to the faster transfer times. This is where Bluetooth
shows to be a much better fit for higher data rate applications.

As the collection frequency decreases, the sleep current
dominates the current consumption. We had a higher average sleep
current due to keeping the network connected at all times, in
addition to a few software problems that need to be addressed. We
discuss these possible optimizations below.

Currently the processor wakes up frequently to service some high

resolution timers (reliable transport layer) that are not needed in the

low power mode. The average low power mode current can be
reduced from 3mA to at least 1.5mA by stopping all of these timers
before we enter the sleep cycle. This will increase the average
lifetime to more than 6 months in the daily collection case.

Another way to reduce the current consumption is to tear down

the network completely in-between collections and re-establish the
network at the beginning of each collection cycle. The sleep current
can be reduced to <700uA in this case. However, this means that we
will now encounter the network formation overhead in every
collection. We chose to go with the current design to allow for on-
demand data collection and reduce the network response time to less
than one minute. However, if this feature is not needed and we
assume that we can only access the network through the
preprogrammed collection cycles, we can increase the battery
lifetime substantially. Fig. 6 compares the average current
consumption and the battery lifetime (shown in months) of both
approaches for varying sleep duration. Note that network formation
overhead has been added for the disconnected network case. It can
be seen that even for the one hour sleep duration, the disconnected
network approach consumes less power.

The current consumption can be reduced even further if we use

an external real time clock solution and completely shut off the
processor during the sleep cycle, which can bring the sleep current
down to the 10uA range. In this case and with a daily collection
cycle we would get about 4.5 years of battery life.

Current Consumption & Lifetime

0
1
2
3
4
5
6
7
8

1 hour
12 hours

24 hours

1 week

1 month

Sleep Duration

C
ur

re
nt

 (m
A

)

0
2
4
6
8
10
12
14
16

Li
fe

tim
e

(m
on

th
s)

Network
Connected
(Current)

Network
Disonnected
(Current)

Network
Connected
(Lifetime)

Network
Disconnected
(Lifetime)

Figure 6. Current consumption & Lifetime

V. CONCLUSIONS AND FUTURE WORK

This paper describes the development and deployment of the

Intel Mote. The key contributions are:
• Created an advanced mote with increased capabilities based on

low-cost components
• Successfully used Bluetooth scatternet mode to create self-

organizing, multi-hop networks
• Demonstrated Bluetooth and platform low power modes to enable

battery powered network operation
• Showed the advantages of a more capable mote design using the

equipment monitoring application

Our development of Bluetooth based motes and the appropriate
networking components have shown that this protocol can be

0-7803-9201-9/05/$20.00 ©2005 IEEE 441

successfully deployed in real sensor network applications. In order
to take advantage of the Intel Mote platform’s capabilities and its
Bluetooth radio, an application should benefit from the increased
computational resources and radio bandwidth. The equipment
monitoring application that we are currently piloting is a good
example thereof.

We have also shown that it is possible to use the Bluetooth

scatternet mode to create multi-hop sensor networks. These
networks can be self-organizing and self-healing in a similar way to
traditional sensor networks. The nominally higher power
consumption of Bluetooth radios can be amortized over the higher
network bandwidth and higher link reliability. As has been shown
previously, the per-bit power consumption of Bluetooth radios can
nominally be lower than for single frequency solutions. In addition,
the overhead of forming network connections as required by the
protocol can be negligible in semi static network configurations. The
high tolerance of channel variations achieved by the frequency
hopping schema enables stable links without the necessity for
frequent reconnections. The tight clock synchronization at the MAC
level allows piconets to operate very efficiently as the transmitter
and receiver can be precisely turned on for their respective
communication slots.

We are working on a number of optimizations in the network

formation and maintenance algorithms that are expected to reduce
connection overhead at least two-fold. In addition, we also expect to
speed up the reliable data transmission protocol by a factor of 2-4,
thereby further increasing network throughput and reducing
transmission times. In addition, new platform software and hardware
currently under development will reduce leakage and extend battery
life by an expected factor of 2-3.

ACKNOWLEDGEMENT

We would like to thank the Intel Research Berkley team, in
particular Wei Hong and Phil Buonadonna for their help in porting
the Intel Mote Software to TinyOS 1.1. In addition, we would like to
thank the folks at Intel Research in Oregon, namely Jasmeet
Chhabra, Mark Yarvis, Lakshman Krishnamurthy and Nandakishore
Kushalnagar for their cooperation on the reliable data transfer
protocol and the mote deployment. Major thanks to Mick Flanigan
and his team from Intel facilities for helping us with the deployment.
Finally, we would like to thank Zeevo, Inc. for their technical
support of this research project.

REFERENCES

[1] Crossbow, Inc., MICA2 mote, http://www.xbow.com/
Products/productsdetails.aspx?sid=72.

[2] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson, “Wireless Sensor Networks for Habitat Monitoring”,
ACM International Workshop on Wireless Sensor Networks and
Applications 2002.

[3] “Intel Mote”, Intel Corporation Research,
http://www.intel.com/research/exploratory/motes.htm.

[4] “TC2001P Product Brief”, Zeevo, Inc., http://www.
zeevo.com/pdf_files/TC2001P_HCI_prodbrief_v1.2.pdf.

[5] “Bluetooth Core Specification v1.1”, Bluetooth Special Interest
Group, http://www.bluetooth.org/spec.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister, “System Architecture Directions for Networked

Sensors”, Architectural Support for Programming Languages
and Operating Systems 2000, pages 93-104.

[7] A Transmission Control Scheme for Media Access in Sensor
Networks, Alec Woo, David Culler, Mobicom 2001.

[8] “An Efficient Scatternet Formation Algorithm for Dynamic
Environments”, Godfrey Tan, Allen Miu, John Guttag, and Hari
Balakrishnan, MIT Laboratory for Computer Science
Cambridge, MA 02139.

[9] Crossbow, Inc., Stargate gateway, http://www.xbow.com/
Products/productsdetails.aspx?sid=8.

0-7803-9201-9/05/$20.00 ©2005 IEEE 442

