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Abstract--The Intel Mote is a new sensor node platform motivated 
by several design goals: increased CPU performance, improved 
radio bandwidth and reliability, and the usage of commercial off-the-
shelf components in order to maintain cost-effectiveness. This new 
platform is built around an integrated wireless microcontroller 
consisting of an ARM*7 core, a Bluetooth radio, SRAM and FLASH 
memory, as well as various I/O options. The Intel Mote software 
architecture is based on an ARM port of TinyOS. Networking and 
routing layers have been created on top of the TinyOS base to 
provide Bluetooth-based multi-hop functionality. The network is 
self-organizing on startup and has mechanisms to repair failed links 
and circumvent failed nodes. A reliable high bandwidth streaming 
transport layer has also been created. 

 
The Intel Mote was deployed in an equipment monitoring 

application using industrial vibration sensors. This application was 
chosen since it benefits from the increased platform capabilities and 
network bandwidth of the Intel Mote platform. The paper presents a 
detailed analysis of the observed network operation, packet transfer 
rates, and power consumption. 
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I. INTRODUCTION 
 

Sensor networks have been built for a number of different 
applications and environments. Traditionally, motes have been based 
on 8-bit microcontrollers such as the Atmel*-128 and single channel 
radios in the 300-900 MHz range [1]. These platforms worked well 
for initial deployments that were focused on environmental 
monitoring [2]. Typical sensors used by those applications required 
fairly low bandwidth for measuring temperature, humidity or 
barometric pressure data. The sensor network hardware was 
sufficient to handle the requirements of such sensor inputs. 

 
Increasingly, sensor networks are being deployed in industrial 

monitoring solutions. This is a new application area with a number 
of different requirements. Some of the desired measurements, such 
as vibration and acceleration, require higher bandwidth and longer 
sampling periods. This in turn necessitates platforms that can acquire 

and transmit larger data streams efficiently. In addition, local CPU 
computational capabilities can be used for data compression as well 
as initial classification and analysis.  
 

II. INTEL MOTE PLATFORM 
 

The Intel Mote [3] was designed to address the above mentioned 
application requirements by introducing a new platform design. 
Further design goals included improved radio reliability, high level 
of integration, and cost-effectiveness. An important aspect of the 
platform design was to achieve increased performance while still 
offering competitive battery life. To satisfy these requirements we 
chose an integrated wireless microcontroller module from Zeevo*, 
Inc. that incorporates an ARM7TDMI core and a CMOS Bluetooth 
radio [4] [5]. Of particular concern was that the chosen module fully 
supports the Bluetooth “scatternet” operation in order to be able to 
build mesh networks. In addition, the hardware needed to support 
the Bluetooth low power modes as well as an overall platform sleep 
mode. 

 
The Intel Mote is built on a 3x3cm circuit board that integrates 

the Zeevo module, a surface-mount 2.4GHz antenna, various digital 
I/O options using stackable connectors and a multi-color status LED. 
The heart of the platform is the integrated 12MHz CPU, BT Radio, 
64KB SRAM, 512KB FLASH module that is contained within an 
11x13mm BGA package. The connectors expose 2 UART ports (one 
without flow control), USB client, GPIOs and power.  The radio’s 
range is approximately 30 meters with the built in antenna, however, 
we were able to extend the range up to a 100 meters using an omni-
directional external antenna.  By simply removing the two matching 
network components, an ultra-small coaxial connector (Hirose 
U.FL) can be soldered in their place to allow for an external antenna 
solution. 

 
When choosing an operating system environment for the Intel 

Mote we decided to use TinyOS [6]. It provides the basic 
functionality needed for the intended applications and benefits from 
a large and active user community. We therefore ported TinyOS to 
the ARM architecture and wrote a set of platform drivers that make 
the various platform I/O components available to the application 
programmer.  The OS and radio stack leave about 11 KB of free 
SRAM to be used by the application. 
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In order to facilitate sensor network research, the Intel Mote was 

designed as a modular platform. This allows custom sensor boards, 
battery boards, interface boards and debug boards to be attached to 
the system in a flexible manner. As shown in Fig. 1, this flexibility is 
provided via a set of pass-through connectors on the main board. 

 

 
Figure 1.  Intel Mote platform 

 
III. NETWORK STACK 

 
A significant difference between the Intel Mote networking stack 

and the networking stacks of previous motes is that the Intel Mote 
network is built on top of a point-to-point Bluetooth baseband. In 
contrast, most other mote platforms broadcast on a common 
communication channel using a CSMA protocol [7]. As a result, we 
implemented new network formation and routing algorithms adapted 
to connection oriented radios. 

 
In order to support the data integrity requirements of the above 

mentioned applications we created a number of new communication 
components on top of TinyOS that are optimized for the Bluetooth 
master/slave and piconet/scatternet operation. The network is self-
organizing on startup by employing a distributed node discovery and 
connection procedure. After basic network establishment, routing 
information is exchanged between the nodes. We also provide 
automatic network repair in case of node or link failures and a low 
power mode that maintains network connectivity. 

 
A. Network Formation 
 
We have implemented a scatternet formation algorithm which 
creates a network with a tree topology using a pre-determined node 
at the root of the tree.  This is a simplified version of the algorithm 
described in [8].  At initialization each node randomly enters either 
an inquiry scan or inquiry state. Each node then alternates between 
these two states until it discovers another node or another node 
attempts to form a connection with it. When a connection is made, 
the two nodes exchange information including a flag which indicates 
whether each node has a route back to the root node. If neither node 
has a path back to the root, the connection is broken and both nodes 
resume searching. 
 
Any node connected directly to the root node will learn that it has a 
path back to the root node during the initial handshake. For every 
new connection, the node initially connected to the root node 
becomes the master in the local piconet and the originally free node 
becomes the slave. After a node has joined the tree, it stops 
performing the inquiry operation and remains in an inquiry scan 

state. By stopping the inquiry process for nodes already in the tree 
connected to the root, this algorithm avoids creating loops in the 
tree.  After the root node connects with another node, all other 
connections are initiated by unconnected nodes called free nodes. 
Free nodes continue the process of alternating between inquiry and 
inquiry scan states. When a free node discovers another node, it 
determines whether the other node has a path to the root node. If it is 
not connected the free node disconnects and continues its search.  If 
the other node is connected, the free node joins the other node’s 
piconet as a slave.  This maintains the tree topology for the network 
in which each master in every piconet is closer to the root than its 
slaves. 

 
B. Network Routing and Repair 
 

For the topologies discussed in this paper, a simple routing 
algorithm is used to maintain a path from the root to each node and 
from each node back to the root. The root periodically sends out a 
routing beacon to each of its slaves. This beacon continues to flow 
down the tree, with each master transmitting it to each of its slaves. 
As the beacon flow progresses each node caches the next hop back 
to the root and echoes a route reply back to the root node. 
Intermediate nodes snoop these replies and refresh their route tables 
for descendent nodes. 

 
The lower level Bluetooth stack periodically exchanges 

maintenance packets across active links. When a link fails and these 
maintenance packets are not received for a pre-determined period of 
time, the lower level stack breaks the connection and signals to the 
upper level that a connection was dropped. The scatternet formation 
algorithm receives these signals and updates its view of the network 
accordingly. If a master receives a signal indicating that it lost a link 
to a slave, it updates its routing table to indicate that the slave and its 
descendants are no longer reachable across that link. If a slave 
receives a signal indicating that it lost its connection to its master, it 
assumes that it can no longer reach the root of the tree and returns to 
the free node state in which it randomly alternates between the 
inquiry and inquiry scan states. It also disconnects from all of its 
slaves so they can also search for a new path back to the root node. 
 
C. Reliability Protocol 
 

We have defined an end-to-end reliable transport protocol to 
support reliable transmission of large datagrams in sensor networks. 
This was needed for the vibration sensing application described 
below, as each collection required the reliable transmission of a 6KB 
buffer, which does not fit into even the largest Bluetooth packet. A 
major requirement of this protocol was reduction of communication 
overhead, as well as memory requirements in each node. The data is 
divided into multiple fragments which may be transferred across 
multiple hops, may arrive out of order, or may be dropped by 
intermediate nodes. To be able to support different link types, the 
fragment size is negotiated in the connection setup process. This 
protocol relies on the receiver to periodically send a list of missing 
fragments and controls a fixed size sliding window. Since the 
receiver is aware of the total datagram size, it is able to verify the 
receipt of the complete datagram.  The sender will not retransmit any 
fragments until it receives a NACK packet. It will only retransmit 
the fragments that the receiver has requested. The protocol has three 
phases, a connection setup, a data transfer and a final 
acknowledgement phase. 
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D. Low Power Mode 
 

We implemented a low power protocol to enable the Bluetooth 
links to be put in low power mode while keeping the network in the 
connected state. This is extremely useful in cases where the network 
response time is required to be in the order of minutes. When the 
root node decides to put the network into a sleep state, e.g., after a 
collection cycle, it issues a “sleep” command to each of its slaves. 
Those store the sleep flag and also retransmit this command to each 
of their slaves, hence propagating it one level at a time down the 
tree. Once the sleep command reaches a leaf node, it sends an ACK 
back up the tree to its master. When a master receives an ACK from 
all of its slaves, it places the Bluetooth links to each of them in 
“hold” mode for a time period Thold, currently set to 20 seconds, and 
sends an ACK to its master. These ACKs are propagated upwards 
until they reach the root node. Once a node has all its connections in 
hold mode, it sleeps itself for Thold. When Thold expires, the master of 
each piconet checks the sleep flag, if it is still set, it puts all of its 
slaves on hold again. Note that since a master puts all its slaves on 
hold at approximately the same time, they also wake up 
concurrently, hence enabling the master to wake up only once per 
Thold interval to synchronize all its slaves. 

 
When the cluster head decides to wake up the network for the 

next data collection phase, it sends a “wake” command through the 
network. Since all the connections are still maintained, the wake 
command will be sent to the first level slaves once Thold expires, 
causing them to reset their sleep flags. As a result, these nodes will 
not attempt to put the links to their own (next level) slaves back in 
hold mode. The process repeats, traversing one level of the tree 
every Thold period. Once the wake command reaches the leaf nodes, 
ACKs will be sent back up the tree, until they reach the root node 
indicating that the network is now awake.  As a result, the network 
wake up time is approximately the tree depth * Thold. 
 

IV. INDUSTRIAL EQUIPMENT MONITORING 
 

Equipment health monitoring is a typical industrial application 
that can benefit from a sensor network deployment. Currently, 
sensors are attached to critical equipment, their readings are 
manually collected and the data is analyzed off-line by computer. 
The data needs to be collected and analyzed frequently enough to 
proactively detect future equipment problems and perform 
preventative maintenance. This can be very critical because shutting 
down a factory to fix broken equipment can be very costly, in 
addition to the possibility of losing some of the product in the 
process. The benefits of using a wireless sensor network for an 
equipment monitoring application are numerous: First, by 
eliminating the labor intensive operation of manual data collection, 
cost savings can be achieved. Second, the automation of such 
repetitive tasks reduces the probability of human errors. Finally, 
using a wireless solution, in particular when retrofitting existing 
buildings, is significantly more cost-effective than using a wired 
solution. 

 
We have performed a test deployment of Intel motes in one of 

Intel’s central utility buildings. This building supplies wafer 
fabrication facilities with the resources needed for their operation. 
Data from vibration sensors connected to water pumps, compressors 
and chillers is regularly monitored. For ease of network management 
and reduction of maximum hop counts, the sensor network is 
divided into clusters. Each mote cluster has a head node that is 
responsible for communication scheduling and power management. 

It is connected to a line powered local “Stargate” gateway node [9] 
via a serial link. All gateways are connected to a root gateway via an 
802.11b network. Finally, the root is connected to a central server 
that runs data analysis software. This test deployment was designed 
as proof of concept for sensor networks in real industrial 
applications and environments. In addition to the Intel Mote clusters, 
we also had MICA2 based clusters deployed in the same building. 
This enabled us to compare the features of the two platforms with 
respect to this industrial monitoring application. 

 
A. Experiment description 
 

We deployed 3 Intel Mote and 3 MICA2 clusters. Each cluster 
covered a set of equipment in separate sections of the building. The 
cluster sizes (up to 10 motes per cluster) were dictated by the 
location of the equipment. Each mote had about 5 sensors attached. 
All motes were instrumented to log many vital networking stats 
(data transfer delay, network formation overhead, packet 
retransmissions, etc). The experiment lasted for 7 days and 
generated significant statistics. The motes were configured to only 
sleep for one hour between collections in order to heavily exercise 
the network. All vibration data was successfully transferred via the 
gateways to the backend server and imported into Rockwell Enshare 
software for further analysis. 

 
We have designed a custom sensor board to interface the Intel 

Mote to Wilcoxon 786A vibration sensors. Much like the manual 
method that this replaces, multiple sensors are connected to a single 
sensor network node. The Intel Mote’s large amount of available 
memory and high speed DMA-based UART enabled us to keep the 
design simple and inexpensive. Each collection consisted of 3000 
vibration samples, of 16 bits. We were able to fit a complete 6KB 
buffer in the internal SRAM of the Imote. The A/D sampling rate 
was 19.2KHz at 16 bits. The Intel Mote’s UART was used to 
transfer the data from the sensor board at 460Kb/s. In the case of the 
MICA2 sensor board, an external RAM buffer and a second 
processor had to be added to the sensor board due to the limited 
capability of that platform. 
 
B. Network Formation Overhead 
 

The network formation is initiated when the cluster head starts. 
Since connections are maintained during the sleep phase, there is no 
need to reestablish them before every collection cycle, hence the 
network formation delay is amortized over many collection cycles. 
The network formation phase remains in effect until either all the 
motes are found or a timeout value is reached. For the purpose of 
this experiment, we set the timeout value to 2 minutes. Over the one 
week run, we had a total of 163 collection cycles. The cluster went 
through the network formation phase only 13 times. Some of the 
new network formations were caused by a special watchdog that 
monitors network performance. The average network formation 
delay for a 7-node cluster was 67 seconds, if we average over all 
collection cycles we get a network formation overhead of 5.3 
seconds per collection. This data is shown in Fig. 2. 
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Figure 2.  Network formation 

 
C. Data Transfer Delay 
 

Each mote transfers 3000 samples (6KB) of data per sensor using 
the reliable transport protocol described above resulting in a total 
data size of 30KB for all 5 sensors. The average transfer time for the 
30KB of data is 88 seconds, with a standard deviation of 9s. By 
comparison, the MICA2 average transfer time was more than 10x 
that of the Imote, with a much larger spread as well. The number of 
fragments needed to transfer the 30KB of data is 320 (maximum 
fragment size is 94B), however, we see an average of 430 fragments 
transmitted per collection, this amounts to about 34% retransmitted 
packets. As expected, we observed that the average and variance in 
the number of retransmitted packets increases with the node hop 
count as shown in Fig. 3. We believe that most of this packet loss 
was due to aggressive NACK timing and buffer overflows.  When 
we examined the number of fragments successfully received and 
divided that by the total number of transmitted fragments, we found 
that the loss rate is about 8.5%.  This can be improved further by 
tweaking the NACK timing and optimizing the lower layer to switch 
faster between piconets.  
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Figure 3. Reliable transport 

 
D. Radio Performance 
 

Two of the Intel Mote clusters had their cluster heads inside the 
building whereas the sensor motes were connected to equipment 
outside the building. The performance of these external clusters was 

very similar to the internal one, despite having to go through walls 
as well as longer hop distances.  In addition, the performance of the 
Imote clusters seemed much more consistent across the different 
collection cycles compared to the Mica2 clusters.  Fig. 4 shows the 
cumulative distribution function of the data transfer time for a Mica2 
and an Imote cluster over the total number of collection cycles.  It 
can be seen that the variance in the Imote performance is much less 
than the Mica2. 
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Figure 4.  Data Transfer Delay 

 
To investigate the effect of physical distance on transmission 

reliability, we performed a separate experiment: two nodes were 
connected directly and the slave transmitted a 3KB buffer to the 
master using the reliability protocol. The distance between the two 
nodes was increased in steps of 3 meters. At each location, 8 
transmissions of the 3KB buffer were performed. Fig. 5 shows the 
min, max and average transmission times as a function of distance. 
The average transmission time for distances smaller than 30m is 
about 1.2 seconds. Since the sender is configured to send 100 byte 
packets every 40ms, 1.2s is the minimum achievable transmission 
time. As the distance is increased beyond 30m, we start seeing 
longer transmission times, as expected. However, even at 60m, we 
still get reliable transmissions (at the expense of higher power 
consumption). The above experiments were performed indoors, in a 
cubicle environment with people moving around and in the presence 
of 802.11b networks. In all of these experiments we hardly see any 
transport layer NACK packets sent, however, the transmission times 
vary quite a bit. This is a result of the Bluetooth MAC layer retries. 
As the link quality decreases, more packets fail the CRC check and 
don’t get acknowledged. The link controller on the transmitter side 
will retry these packets multiple times. 

 

Mica 2 Cluster 
Imote Cluster 
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Transmission times versus distance (3KB)
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Figure 5. Radio range 

 
E. Current Consumption 
 

We have measured the current consumed in the different phases 
of operation. The following table shows the amount of current 
consumed and time spent in each mode. Note that we assumed the 
Imote radio is always on during an active cycle, this is a 
conservative estimate (Imote with radio off consumes about 9 mA).  
The table sets the sleep cycle to 1 hour to match the deployment. As 
the collection frequency is decreased, the sleep current dominates 
the current consumption. The battery solution that was used in this 
deployment (4 C-cells) has a capacity of ~9100mAh at 6V nominal. 
For this configuration, the resulting network lifetime is roughly 2 
months.  Since this deployment was a retrofit, supplying power 
hookups to the motes was deemed too expensive by the facilities 
team which might not be the case in new installations. 

 
TABLE 1. Current  consumption 

 
Modes Isupply 

[mA] 
tcycle 

[s] 
Avg. Isupply 

[mA] 

Sleep mode 3.0 3600.0 2.53 
Imote + radio 20.7 591.0 2.87 
Imote+Sensor 54.6 75.5 0.97 
Imote+Sensor+A/D 58.8 1.5 0.02 
Total cycle - 4268.0 6.39 

 
There are multiple lessons to take away from this experiment: 

First, the current consumed by the sensor and board exceeds that of 
the mote even in full power. Second, the current consumed to 
perform a collection cycle was less than one tenth that of the MICA2 
clusters, due to the faster transfer times. This is where Bluetooth 
shows to be a much better fit for higher data rate applications. 
 

As the collection frequency decreases, the sleep current 
dominates the current consumption. We had a higher average sleep 
current due to keeping the network connected at all times, in 
addition to a few software problems that need to be addressed. We 
discuss these possible optimizations below. 

 
Currently the processor wakes up frequently to service some high 

resolution timers (reliable transport layer) that are not needed in the 

low power mode. The average low power mode current can be 
reduced from 3mA to at least 1.5mA by stopping all of these timers 
before we enter the sleep cycle. This will increase the average 
lifetime to more than 6 months in the daily collection case. 

 
Another way to reduce the current consumption is to tear down 

the network completely in-between collections and re-establish the 
network at the beginning of each collection cycle. The sleep current 
can be reduced to <700uA in this case. However, this means that we 
will now encounter the network formation overhead in every 
collection. We chose to go with the current design to allow for on-
demand data collection and reduce the network response time to less 
than one minute. However, if this feature is not needed and we 
assume that we can only access the network through the 
preprogrammed collection cycles, we can increase the battery 
lifetime substantially. Fig. 6 compares the average current 
consumption and the battery lifetime (shown in months) of both 
approaches for varying sleep duration. Note that network formation 
overhead has been added for the disconnected network case. It can 
be seen that even for the one hour sleep duration, the disconnected 
network approach consumes less power. 

 
The current consumption can be reduced even further if we use 

an external real time clock solution and completely shut off the 
processor during the sleep cycle, which can bring the sleep current 
down to the 10uA range. In this case and with a daily collection 
cycle we would get about 4.5 years of battery life. 
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Figure 6. Current consumption & Lifetime 

 
V. CONCLUSIONS AND FUTURE WORK 

 
This paper describes the development and deployment of the 

Intel Mote. The key contributions are: 
• Created an advanced mote with increased capabilities based on 

low-cost components 
• Successfully used Bluetooth scatternet mode to create self-

organizing, multi-hop networks 
• Demonstrated Bluetooth and platform low power modes to enable 

battery powered network operation 
• Showed the advantages of a more capable mote design using the 

equipment monitoring application 
 

Our development of Bluetooth based motes and the appropriate 
networking components have shown that this protocol can be 
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successfully deployed in real sensor network applications. In order 
to take advantage of the Intel Mote platform’s capabilities and its 
Bluetooth radio, an application should benefit from the increased 
computational resources and radio bandwidth. The equipment 
monitoring application that we are currently piloting is a good 
example thereof. 

 
We have also shown that it is possible to use the Bluetooth 

scatternet mode to create multi-hop sensor networks. These 
networks can be self-organizing and self-healing in a similar way to 
traditional sensor networks. The nominally higher power 
consumption of Bluetooth radios can be amortized over the higher 
network bandwidth and higher link reliability. As has been shown 
previously, the per-bit power consumption of Bluetooth radios can 
nominally be lower than for single frequency solutions. In addition, 
the overhead of forming network connections as required by the 
protocol can be negligible in semi static network configurations. The 
high tolerance of channel variations achieved by the frequency 
hopping schema enables stable links without the necessity for 
frequent reconnections. The tight clock synchronization at the MAC 
level allows piconets to operate very efficiently as the transmitter 
and receiver can be precisely turned on for their respective 
communication slots. 

 
We are working on a number of optimizations in the network 

formation and maintenance algorithms that are expected to reduce 
connection overhead at least two-fold. In addition, we also expect to 
speed up the reliable data transmission protocol by a factor of 2-4, 
thereby further increasing network throughput and reducing 
transmission times. In addition, new platform software and hardware 
currently under development will reduce leakage and extend battery 
life by an expected factor of 2-3. 
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