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ABSTRACT
Structural health monitoring (SHM) is an important appli-
cation area for wireless sensor networks. SHM techniques at-
tempt to autonomously detect and localize damage in large
civil structures. Structural engineers often implement and
test SHM algorithms in a higher level language such as
C/Matlab. In this paper, we describe the design and eval-
uation of NetSHM, a sensor network system that allows
structural engineers to program SHM applications in Mat-
lab or C at a high level of abstraction. In particular, struc-
tural engineers do not have to understand the intricacies of
wireless networking, or the details of sensor data acquisition.
We have implemented a damage detection technique and a
damage localization technique on a complete NetSHM pro-
totype. Our experiments on small and medium-scale struc-
tures show that NetSHM is able to detect and localized
damage perfectly with very few false-positives and no false
negatives, and that it is robust even in realistic wireless en-
vironments.

Categories and Subject Descriptors
H.4 [Information Systems Applications ]: Miscella-
neous

General Terms
Experimentation
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1. INTRODUCTION
Structural health monitoring (SHM) [1] is a vast, inter-

disciplinary area of research whose literature spans several
decades. Wireless sensor networks promise cheap and dense
instrumentation for structural monitoring [2]. Recent work
has demonstrated the feasibility of continuous structural
data collection using a wireless network [3, 4, 5]. This paper
takes the next step in the evolution of this research, exam-
ining how wireless sensor networks might be used for more
sophisticated structural monitoring tasks.

The central focus of SHM research is the detection and lo-
calization of damage in a variety of structures [6]. Broadly
speaking, SHM techniques for detecting [7, 8, 9] and localiz-
ing [10] damage (henceforth, SHM techniques) rely on mea-
suring structural response to ambient vibrations or forced
excitation. Ambient vibrations can be caused by earth-
quakes, wind, or passing vehicles, and forced vibrations can
be delivered by hydraulic or piezoelectric shakers. A vari-
ety of sensors, such as accelerometers, strain gauges, and
displacement sensors can be used to measure structural re-
sponse. SHM techniques infer the existence and location of
damage by detecting differences in local or global structural
response before and after damage.

Wireless sensor networks have an important role to play
in SHM. Wireless sensors simplify the deployment of instru-
mentation, and can greatly reduce cabling costs [11]. Fur-
thermore, a dense deployment of wireless sensors can in-
crease the accuracy of SHM techniques. This follows from
the fact that many SHM techniques measure properties of
a structure’s modes. A mode is the spatio-temporal defor-
mation pattern exhibited by a structure in response to a
vibration. Damage can alter one or more modes. Large
structures can have several hundred modes, and the larger
the number of sensors, the larger the likelihood of accu-
rately capturing all the modes. On the other hand, SHM
presents many challenges for wireless sensor networks [12]:
SHM applications need reliable high data-rate delivery, and
fine time-synchronization.

For wireless sensor networks to be adopted for SHM, a
key enabler will be a system that allows structural engineers
to program SHM techniques in an idiom they are comfort-
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able with. This paper discusses the design of NetSHM, a
programmable, re-usable and evolvable software system for
implementing SHM techniques on wireless sensor-actuator
networks. Structural engineers write SHM applications in
Matlab or C at a high level of abstraction; their programs
explicitly task collections of sensors and actuators at speci-
fied times, then process the retrieved data using data manip-
ulation constructs native to the corresponding programming
language. In NetSHM, sensors can also be tasked to locally
process raw sensor data for energy-efficiency. At this high
level of abstraction, structural engineers need not be exposed
to the intricacies of wireless networking and routing, nor to
the platform specific details of sensor data acquisition.

The NetSHM system architecture (Section 2) is based on
the observation that, to deal with the data rate requirements
of SHM applications [4], wireless sensor-actuator networks
for structural monitoring will be hierarchical. These net-
works will consists of two tiers: the lower-tier comprised
of mote-class wireless sensor nodes enable flexible deploy-
ment on a structure, and an upper-tier comprised of higher-
capacity nodes (either PCs or Stargate-class nodes) that pro-
vide the bandwidth scaling. NetSHM leverages this hier-
archical network to realize a novel functional decomposition
between the two tiers. In NetSHM, all applications run on
upper-tier nodes and task individual motes to collect, and
possibly process, data. Motes transmit the raw or processed
data to the relevant upper-tier node, perhaps over multiple
hops. Such an architecture permits re-use of the lower-tier
systems components, and a flexibly designed tasking inter-
face can let applications use increased processing power on
the motes as the technology evolves.

Our NetSHM prototype (Section 2) is a fairly complete
realization of this architecture. We have implemented a
routing subsystem that enables communication between the
two tiers, and a reliable delivery mechanism for conveying
tasks and results between the two layers. We have also im-
plemented a tasking interface that permits triggered data
collection from the lower-tier.

On our NetSHM prototype, we have implemented two
qualitatively different SHM applications, one which detects
damage using shifts in modal frequencies, and another which
localizes damage based on mode shape changes. In both
these applications, data acquisition is triggered by forced vi-
brations on the structure; this mode of operation is suitable
for wireless sensor networks since nodes can sleep between
tests to conserve energy. Furthermore, some of our SHM
techniques are amenable to local processing, where raw sen-
sor data is processed before being transmitted to the base
station, further conserving energy. We show how a pre-
viously proposed localization technique can be adapted to
take advantage of local processing.

We have extensively (Section 3) evaluated these applica-
tions on a scaled model of a 4-story building. We find that
our applications are able to detect and localize all the dam-
age patterns we studied. We also find that these applica-
tions are amenable to a highly energy-efficient implemen-
tation. We have also evaluated a larger deployment of a
NetSHM prototype on a full scale imitation hospital ceil-
ing. We find that NetSHM can provide robust, low-latency
triggered data acquisition even in realistic wireless environ-
ments. Finally, we know of no prior work that has examined
a software system for SHM application development. Clos-
est in spirit to our work is that of Kottapalli et al. [13] who

also sketch a two-tier architecture for SHM applications, but
focus on hardware and MAC layer designs for the two tiers.

2. NetSHMARCHITECTURE, DESIGN AND
IMPLEMENTATION

In this section we describe the architecture, design and
implementation of our NetSHM prototype.

2.1 Goals
In addition to the data rate, reliable delivery and time syn-

chronization requirements imposed by SHM applications, we
set three design goals for NetSHM. (In what follows, we re-
fer to an SHM technique implemented on NetSHM as an
SHM application.)

First, NetSHM should present a programming abstrac-
tion familiar to structural engineers. In particular, the Net-
SHM programmer should not be exposed to the intricacies
of wireless communication, energy management, and device
resource constraints. Without this requirement, we see little
likelihood of sensor networks being adopted in this applica-
tion domain.

Second, NetSHM must be designed to be re-usable in
two distinct senses of the term. System components should
not have to be re-designed or re-implemented for different
SHM applications. For instance, one should not have to
write a new routing or time synchronization protocol when
implementing a new SHM application on NetSHM. This is
a very difficult objective since the space of SHM techniques
is large.

Finally, NetSHM applications should not have to be re-
implemented as technology evolves. The mote-class devices
today cannot support some of the signal processing tasks
that SHM applications demand; given their memory con-
straints, it is possible to implement Fast Fourier Transforms
on the motes, but just barely so. However, as these devices
evolve to have more on-board processing and memory, the
NetSHM system should be able to transparently make use
of these resources in order to increase system lifetime.

2.2 The NetSHM Architecture
NetSHM employs a different, yet simple and intuitive

architecture for two-tiered sensor/actuator networks (Fig-
ure 1). In NetSHM, SHM applications run on an upper-tier
node (e.g., a PC). An application may run on any node. Re-
stricting programs to run on upper-tier nodes is motivated
by the signal processing needs of SHM applications. As tech-
nology advances, upper-tier nodes will always have far more
processing and memory than lower-tier nodes (motes) and
SHM applications can leverage these resources to improve
the quality of detection and localization.

In NetSHM, an SHM application can address a message
to a specific mote. This individual mote addressability con-
tradicts what previous research has assumed, but more natu-
rally captures the way structural engineers think about SHM
techniques. Specifically, their descriptions of algorithms em-
ploy spatial concepts (like mode shapes), and being able to
specify individual sensors or sensing points is a useful capa-
bility that helps them program SHM techniques. Individual
mote addressability enables SHM applications to selectively
address individual shakers, or to address a subset of motes
in an over-engineered deployment.

SHM applications can send messages to individual motes,
but they cannot perform arbitrary computations on them.
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In the NetSHM architecture, an application is restricted to
tasking a mote in one of four ways: 1. Collect raw sensor
data within a specified time interval and with specified sen-
sor parameters (e.g., sampling rate), and transmit it back
to the upper-tier node running the application; 2. Collect
raw sensor data within a specified time interval and with
specified sensor parameters (e.g., sampling rate), but locally
process the raw samples and transmit the processed data to
the upper-tier node running the application. At any given
instant, a mote exports a pre-defined library of processing
functions. This library can evolve over time. This library
can contain functions ranging from simple windowed aver-
aging and thresholding, to more complicated computation
of FFTs and ARMA coefficients; 3. Actuate an attached
shaker using a specified type of excitation at a specified
time, or according to a specified schedule; and, 4. Get and
set device parameters and statistics. This can be used for
monitoring and management of the lower-tier devices.

2.3 The Programming Interface
One explicit goal of NetSHM is to raise the level of ab-

straction for programming SHM applications to the point
where structural engineers should not have to understand
the intricacies of sensor networking. Without this, we be-
lieve it is unlikely that sensor networks will be used for
SHM. To guide our choice of the NetSHM programming
interface, we look to current practice in the structural engi-
neering community. Many structural engineers extensively
simulate models of structures in software before prototyping
or building them. Matlab is often used for analytical mod-
els, and NASTRAN (implemented in C) for finite-element
modeling.

Our NetSHM prototype provides programmers with a
suite of Matlab and C functions that they can use to imple-
ment SHM applications. Our programming interface closely
follows the tasking interface described in Section 2.2. A
triggered SHM application implemented using this interface
first creates one or more logical groups of motes that need
to participate in the application. This group construct is a
convenient abstraction for addressing collections of lower-
tier nodes. The application then tasks a group to start
collecting vibration data at a specified relative time with
a specified sampling rate. It also tasks a group of shakers
to excite the structure at a specified time. The results of
this test are returned asynchronously to the SHM applica-
tion, and can be manipulated by the application as a Matlab
dataset. Figure 6 shows an example of a damage detection
application written using this interface. (In the code snip-
pets, functions beginning with “NetSHM” are part of the
interface. We have omitted a detailed description of the
NetSHM API for brevity.) We describe this example in
greater detail in a later section.

2.4 The Software Structure
NetSHM consists of two distinct stacks, one for the upper-

tier nodes (Figure 2), and one for the motes (Figure 3).
At the top of the upper-tier stack, the NetSHM pro-

gramming interface is built on top of a task library. In
our current prototype, the task library is implemented in
C, and the NetSHM Matlab interface functions make calls
to the library via Matlab Mex function wrappers. The li-
brary translates the interface functions into a sequence of
tasks that are transmitted to motes. It invokes a reliability

mechanism implemented on top of a robust routing layer.
These two components are described below.

The task library itself is conceptually simple. Interface
calls to create node groups create local state in the library
that associate a group identifier with a set of nodes. In prin-
ciple, the library would interface with a resource discovery
component for determining the identity, location, and other
characteristics of the motes deployed on a structure. In our
current prototype, this information is manually configured.
This is a reasonable short-term design since placing sen-
sors on structures typically involves a great deal of planning
and human intervention. Longer-term, of course, automated
node discovery mechanisms can simplify deployment. Inter-
face calls to command a group of nodes to collect sensor
data, or to excite the structure are translated by the task
library into messages that are individually sent to the rele-
vant motes. Our current stack does not export a multicast
delivery abstraction, and we have left this to future work.

The mote stack is similarly implemented. Tasks from
SHM applications are delivered using the routing layer to the
addressed mote. At each intermediate hop, network packets
may be retransmitted to improve the likelihood of delivery.
At the destination, the reliability layer implements end-to-
end error recovery and sequenced delivery to the tasking
layer. This latter layer interprets the tasking commands and
executes them appropriately. Executing a task may involve
activating a sensor or a shaker at a specified time, and then
processing raw sensor data. Results from a task are delivered
reliably back to the corresponding upper-tier node. In our
current prototype, we have not implemented any local pro-
cessing, since even the most basic SHM processing (an FFT
on vibration samples) is beyond the reach of the platform
NetSHM currently executes on (the Mica-Z). In our experi-
ence, the memory constraint on this platforms inhibits this
functionality, and we believe that such local processing can
be implemented on the next generation of sensor platforms
such as the Tmote Sky or the Intel Research motes.

NetSHM uses the FTSP [14] implementation in the TinyOS
tree for time synchronization, with some minor modifica-
tions for compatibility. We also changed the default clock
frequency so that the clock wrap-around time is sufficiently
large, yet bounds time synchronization error to within a few
hundred microseconds, well within one sample time (vibra-
tions from large structures are usually sampled at hundreds
of Hz).

The current NetSHM prototype lacks two important com-
ponents: support for the execution of multiple concurrent
SHM applications, and support for duty cycling. These
components require substantial research and are beyond the
scope of this work. Concurrent application execution will al-
low users, for example, to improve the accuracy of damage
localization by concurrently running two qualitatively dif-
ferent damage localization algorithms. Support for concur-
rent execution can be implemented by a distributed resource
management layer at the upper-tier, which knows about and
arbitrates between overlapping tasks issued to one or more
motes. Support for network-wide duty-cycling can leverage
prior work on the design of long-lived sensor networks but
needs to support unpredictable task arrivals.

2.5 Routing
A core component of NetSHM is the module that sup-
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Figure 1: The organizational hierarchy

of NetSHM

Figure 2: NetSHM Stack on the gate-

way nodes
Figure 3: NetSHM stack on the mote

class nodes

ports robust dynamic routing. Unlike traditional commu-
nication networks, NetSHM does not require any-to-any
routing. Rather, upper-tier nodes need to be able to com-
municate with any mote, and vice-versa. A mote in Net-
SHM never originates a message destined to another mote.
Upper-tier nodes can communicate with each other; in Net-
SHM, an application may be distributed across many upper-
tier nodes (although our current applications are not). The
requirements for robustness in NetSHM are, however, the
same as in other networks: as long as there exists a commu-
nication path between an upper-tier node and a mote, the
two of them should be able to exchange packets.

All NetSHM nodes (upper or lower tier) derive their ad-
dresses from the same flat address space. In our implemen-
tation, lower tier nodes use the TinyOS node IDs while the
upper tier nodes are manually configured. Admittedly, flat
addressing does not scale beyond a few hundred nodes and
devising scalable, auto-configurable addressing is a key chal-
lenge for NetSHM.

Any-to-any routing on the upper-tier can potentially bor-
row solutions from the ad-hoc routing literature. For expe-
diency, we chose to implement a simple distance-vector type
scheme on the upper-tier. This routing protocol not only
disseminates routes to upper-tier nodes, but also distributes
routes to the motes imported from the gateways (described
below). Routes to motes are tagged with the address of
the gateway, enabling upper-tier nodes to reach any mote.
This design is conceptually similar to the kind of hierarchical
routing employed in the Internet.

For routing from motes to an upper-tier gateway, our pro-
totype uses code from the CENS Extensible Sensing System.
This system constructs several routing trees in the lower
tier, one tree rooted at each gateway. Each mote chooses
the “best” gateway, using a cost metric similar to [15].

For routing from an upper-tier gateway to the motes, we
have implemented a simple flat routing protocol built on
this forest of trees. In our protocol, each node propagates,
to its parent, reachability to all nodes within the subtree
rooted at itself. This is achieved using a periodic routing
table transmission to the parent. Eventually, the gateway
receives routes to all motes within its subtree, and it then
exports these routes into the upper-tier any-to-any routing
protocol as described above.

2.6 Reliable Delivery
NetSHM provides reliable delivery of tasks from upper-

tier nodes to motes, and raw samples or processed data from
motes back to the corresponding upper-tier node. In Net-

SHM, reliable delivery is transactional in the sense that data
is always sent in response to a task. However, these trans-
actions can be asynchronous. The response to a task can be
received well after that task is issued by the SHM applica-
tion. For example, a task might require a sensor to respond
at a certain time, or in response to a significant external
event. Furthermore, these transactions can be asymmetric,
since task descriptions are concise, but responses to tasks
can transfer significantly more data. These two differences
motivate different reliable transfer abstractions and provide
opportunities for optimized implementations relative to ex-
isting reliable delivery mechanisms such as TCP.

Rather than provide a single reliable delivery abstraction
between the two tiers, NetSHM leverages the asymmetry
in the underlying architecture to provide two different reli-
able delivery abstractions: reliable packet delivery from the
upper-tier nodes to motes (for tasks), and reliable and se-
quenced stream delivery from the motes to the upper-tier
(for data).

Because tasks are smaller and fit in one packet, the im-
plementation of the packet delivery abstraction can be op-
timized in two ways. First, packet delivery avoids the over-
head of connection establishment and teardown, relying in-
stead on a simple end-to-end acknowledgment. Second, this
more specialized abstraction avoids the need to provision
large buffers for sequencing data on the resource-constrained
motes.

The stream delivery abstraction is conceptually very simi-
lar to TCP, but the implementation details are subtly differ-
ent. The stream delivery abstraction is implemented using
negative end-to-end acknowledgements instead of a cumu-
lative acknowledgement as in TCP. This permits faster re-
covery of multiple losses. In our current implementation,
retransmission buffers at the sending mote are stored in its
EEPROM. For improved performance, stream delivery relies
on a limited number of hop-by-hop retransmissions. The re-
ceiving end ensures sequenced delivery to the application by
buffering packets. Our current implementation does not in-
corporate any congestion control mechanisms, but rate lim-
its the sender to a configurable transmission rate. We have
left congestion adaptation to future work.

Stream delivery uses a connection establishment mecha-
nism very similar to that of TCP. However, because stream
delivery is fundamentally simplex, the connection establish-
ment state diagram is slightly simpler than that of TCP
(omitted for brevity) and requires fewer handshakes for con-
nection establishment and teardown.

Finally, both stream and packet delivery work transpar-
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ently across the two tiers in NetSHM. Both types of reliable
delivery can traverse multiple hops on both tiers of the net-
work but there is almost no functional difference between
our implementations for the two layers, with one exception:
between neighboring motes our implementation uses MAC-
layers ACKs to perform hop-by-hop retransmissions, but be-
tween two upper-tier neighbors, we use a TCP “tunnel” for
implementation convenience.

3. EXPERIMENTAL RESULTS
We have implemented a modal frequency shift based dam-

age detection technique, and a mode-shape estimation based
damage localization technique on our NetSHM prototype.
We have tested these algorithms on a 48-inch scale model
of a 4-story building. We have also implemented a trig-
gered data collection application on a full-scale seismic test
structure, to get a sense of NetSHM performance under
realistic wireless conditions. This section describes these
experiments.

3.1 Experimental Setup
The scaled building model (Figure 5) is 48 inches high,

with 1/2x12x18-inch aluminum plates which serve as floors
and are supported by 1/2x1/8-inch steel columns. Remov-
able 5.5 lbs/inch springs serve as braces between the floors of
the structure. These strings augment the stiffness between
the floors. Damage is induced by removing these springs
from the structure. The building has four wirelessly con-
trolled shakers built using off-the-shelf components. These
can be tasked via an attached Mica-Z mote to deliver im-
pulses to the top floor of the structure.

The seismic test structure (Figure 4) is a platform for
conducting seismic experiments on a full-scale realistic imi-
tation of a 28’×48’ hospital ceiling. The ceiling is complete
with functional electric lights, fire sprinklers, drop ceiling
installations and water pipes carrying water. Furthermore,
the ceiling is designed to support 10,000 lb of weight. The
entire ceiling can be subjected to uni-axial motion with a
peak-to-peak stroke of 10 inches, using a 55,000 lb MTS
hydraulic actuator having a ±5 inch stroke. The hydraulic
pump delivers up to 40 GPM at 3000 PSI. The total weight
of the moving portion of the test structure is approximately
12,000 lb. Currently, the test structure requires a human-
in-the-loop to actuate the shaker.

Our NetSHM prototype runs on a hierarchical network of
PCs, Stargates and Mica-Z motes. We later describe the de-
tailed network configuration for each of our two structures.

Attached to the Mica-Z motes is a vibration card specially
designed for high-quality vibration sensing. The vibration
card can be programmed to sample at frequencies from 5Hz
to 20KHz at 16 bits per sample and has a programmable
anti-aliasing filter to accommodate different sampling rates.
The 16-bit ADC of the vibration card is controlled by an
on-board microprocessor, which in turn can be commanded
by the attached Mica-Z mote via a serial port. The stored
samples can be retrieved in one shot from the on-card 64K
byte SRAM by issuing commands over the serial port. We
modified the card firmware to support retrieval of blocks of
samples from the card’s RAM. This enabled us to conserve
memory on the Mica-Z. Finally, we attached highly sensi-
tive tri-axial accelerometers (dynamic range of -2.5g-2.5g,
sensitivity in the µg range), to the vibration card.

[sys,pole,modeShapes] = era(samples,1/200);

%create a group for sensors

%create a group for actuators

;

idSensors = NetSHMCreateGroup([16,7,13,14,5,2,4,3]);

idActuator = NetSHMCreateGroup([6]);

NetSHMCmdActuate(gidActuator,22);

samples = NetSHMGetSamples(gidSensors,20,200,1,4) ;

actuate after 22 seconds%

% 4000 samples at 200Hz along x axis starting 20 secs from now

%task motes to sense and send data

function k = getStiffnessFromBuilding()

%find  eigen values and vectors of A
for the correspondign continous time system%

k = LMSSolution(V,U);
%find the least mean square estimate

U = sys.c*modeShapes(:,1:2:end)
V = log(pole(1:2:end))*200;

%perform ERA on the samples

Figure 8: Code for the damage localization application

3.2 NetSHM Applications for Damage De-
tection and Localization

We have implemented two SHM techniques, one for dam-
age detection and another for damage location, as NetSHM
applications. The damage detection technique is an instance
of a modal frequency shift based approach, and the localiza-
tion algorithm is borrowed from the structural engineering
literature. We emphasize that it is not our intent to devise
novel SHM techniques. Rather, our intent is to show how
to take existing SHM techniques, modify them to leverage
local computation, and to understand the ease of program-
ming them using our NetSHM prototype.

Damage Detection. We have implemented a simple modal
frequency shift based damage detection application [16] in
NetSHM. The code for this application is shown in Fig-
ure 6. This application works as follows: 1. Actuate the
structure and collect the structural response histories from
all the sensors; 2. Estimate the power spectral densities for
each of the collected structural response histories–we do this
by first estimating the auto-correlation of each history fol-
lowed by a Fourier transform of the autocorrelations, and
the magnitude of the Fourier transform provides the power
spectral density; 3. Perform peak detection on the power
spectral densities of the time histories and select dominant
peaks (greater than a certain threshold of energy) to cre-
ate a set of modal frequencies for each structural response
history; and, 4. The complete set of the modal frequencies
is the union of the modal frequencies discovered for each
structural response history.

In NetSHM, such a technique can be implemented by
tasking the actuators and sensors in Step 1, then perform-
ing Steps 2 through 4 on an upper-tier node. When mote
technology evolves to the point where it becomes feasible
to compute peaks in power spectral densities at the motes,
NetSHM can (transparently to the application) push Steps
2 and 3 to be computed locally on the motes. Each mote
would then transmit the modal frequency peaks alone, re-
sulting in significant communication energy savings. We
quantify the extent of this savings in a later section.
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Figure 4: The seismic test struc-

ture Figure 5: The 48 inch

scaled model of a 4-story

building

%task motes to sense and send data

%create a group for sensors

%create a group for actuators

% find the modal frequencies from all the samples 

%read the originally stored modes

%detect possible damage

modes = findModes(samples)

load originalModes ;

;

shift = findModalFreqShifts(modes,originalModes);

function shift = getModalShiftsFromBuilding()

idSensors = NetSHMCreateGroup([16,7,13,14,5,2,4,3]);

idActuator = NetSHMCreateGroup([6]);

NetSHMCmdActuate(gidActuator,22);

samples = NetSHMGetSamples(gidSensors,20,200,1,4) ;

actuate after 22 seconds%

% 4000 samples at 200Hz along x axis starting 20 secs from now

Figure 6: Code in matlab for de-

tecting damage in the structure
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Damage Localization. The damage localization applica-
tion that we have implemented in NetSHM is that of Caicedo
et al. [17]. This technique is specifically designed for multi-
storied buildings and can localize the floors where the dam-
age has occurred. The scheme models a multi-storied build-
ing as a mass spring system (Figure 7). The stiffness ki

of each spring is the combined stiffness of all the members
of the ith floor and the mass mi is the entire mass of each
floor. Based on the responses to vibration, our localization
algorithm computes the change in stiffness on each floor, in-
ferring that damage has occurred on a floor whose stiffness
changes significantly.

For our 4-story building model, the solution to finding the
stiffness of each floor is given by:

ψj = kµj (1)

ψj =

2664
vj1 vj1 − vj2 0 0
0 vj2 − vj1 vj2 − vj3 0
0 0 vj3 − vj2 vj3 − vj4

0 0 0 vj4 − vj3

3775 (2)

k =
ˆ
k1 k2 k3 k4

˜T
(3)

µj = λj

ˆ
m1 m2 m3 m4

˜
(4)

Here, vj =
ˆ
vj1 vj2 vj3 vj4

˜T
is the jth mode shape

induced in the structure and λj is the corresponding eigen-
value. This leads to the following system of equations:26664

ψ1

ψ2

...
φl

37775 = k

26664
µ1

µ2

...
µl

37775 (5)

The stiffness is estimated as a least-mean-square fit solution
over all dominant modes in the structure. To estimate the
mode shapes we used the ERA algorithm described in [17].

For brevity, we omit a detailed discussion of the appli-
cation, but this computation is fundamentally centralized.
As such, this localization technique can be implemented by
tasking sensors and actuators in a manner similar to Step 1
of the damage detection implementation, and estimating the
change in stiffnesses at an upper-tier node. The NetSHM
code for this application is shown in Figure 8.

3.3 Detection and Localization Results
We deployed and tested these SHM applications on the

scaled building model. On this model, we deployed 8 Mica-
Z modes with vibration cards, and another Mica-Z mote
attached to our actuators. Two motes were deployed on
each floor of the building and each mote was attached to
a tri-axial accelerometer. This configuration is necessary
since, for small deformations, each floor has three degrees
of freedom (x, y and θ), and at least 2 accelerometers are
necessary to estimate these quantities. In our setup, ac-
celerometers were placed at two diagonally opposite corners
of each floor and sample the structure at 200Hz.

The upper-tier network was formed by a PC and a Star-
gate, the latter acting as a single gateway to the motes (we
discuss experiments with multiple gateways in Section 3.4).
The PC ran our NetSHM applications and each application
was programmed to run a single test. In each application,
sensors were tasked to begin sampling at a specified time,
and the actuators were tasked to deliver an impulse about
2 seconds after that. Each sensor collected the structural
response for 30 seconds, then transmitted the data to the
PC using our reliable transmission and routing modules.

We report results obtained by running our NetSHM ap-
plications on nine different damage scenarios, listed in Ta-
ble 1. For each application, we ran each scenario five times,
and present below the aggregated results from these tests.

Damage Detection Results. In Table 1, second column,
we list all the estimated modal frequencies encountered for
each configuration. The spectral resolution of our scheme
was 0.1Hz in our scheme and we found the estimated modal
frequencies to be consistent across all the trials for every
damaged case.

Damage in a structure may result in a decrease in modal
energy at some frequencies, accentuate an originally dor-
mant mode and make it appear, or even make a mode dis-
appear entirely. Typically the higher the frequency of the
mode, the higher the shift in frequencies after damage. As
seen in Table 1 the modal frequencies that exhibit a change
from the common damage case i.e., Case 0 are depicted in
bold. Our implementation is able to detect changes at least
in one mode for every test case. This is a very encourag-
ing result which validates that, at least for test structures,
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Figure 9: Layout of the motes in the

seismic structure
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Figure 10: Latencies measured in the

seismic-test structure deployment
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Figure 11: Latencies measured when

one StarGate was unplugged during the

experiment

NetSHM can be used to rapidly prototype accurate damage
detection algorithms. This is important — a lot of structural
engineering research uses actual experiments on test struc-
tures and a platform like NetSHM has the potential to spur
the research conducted by that community.

Damage Localization Results. Columns 3-6 in Table 1
depict the calculated average loss of stiffness for each of
the four cases over several tests. Consider the result for
Case 1 in Table 1, where two braces were removed from the
fourth floor. The loss of stiffness on the fourth floor is about
4% after removal of the braces. By contrast, for the other
floors the change is less than 1.2%. Thus, there is a clear
indication of damage on the fourth floor. The estimated loss
of stiffness is also consistent with the level of damage. For
example, in Case 2, where all springs on the first floor are
removed, the loss of stiffness is almost twice that in Case 1.
This observation holds at each floor. Finally, the localization
algorithm accurately estimates loss of stiffness in (and only
in) the correct floors in Cases 9 and 10.

As seen from Table 1 every damage instance was accu-
rately localized as reflected by the significant loss of stiffness
(about 5% to 10%) in the corresponding floors and a small
variation in the rest of the floors (about 1%). Thus, it is rel-
atively easy, on this structure, to pick out a threshold that
will result in no false positives or false negatives in damage
localization. As an aside, there are several entries in Ta-
ble 1 with a negative loss of stiffness. We attribute this to
sensor error, as well as numerical errors in the computation.
The fact that we are able to actually localize damage on
the appropriate floors even with multiple damaged locations
(cases 9 and 10) is highly encouraging both as a validation
of NetSHM as well the applicability of dense sensing for
this application domain.

Finally, we try to quantify the communication savings
that could have been obtained if local computation were
used in our NetSHM prototype. For damage detection,
we find that local computation reduces messaging cost by
a factor of 500. In recent work [18], we show how this lo-
calization application can be modified to locally compute
auto-correlation coefficients at a lower tier node; with this
approach, messaging cost is reduced by a factor of 250. We
computed these numbers by using the raw sensor readings
received during our two experiments, then computing the
number of packets necessary to transmit the modal frequen-
cies (for damage detection), or the auto-correlation coeffi-
cients (for localization).

3.4 NetSHM at Scale
Finally, we deployed a 14-mote, 2-stargate NetSHM pro-

totype on the seismic test structure shown in Figure 4. The
NetSHM application was implemented on a laptop. Fig-
ure 9 shows the layout of our network and also depicts the
topology for the duration of the experiment. In the figure,
dark solid arrows depict dominant links (links over which
more than 40% of the packets were transmitted) to a Star-
gate, while dark dashed arrows depict the less frequently
used links. Motes 9 and 13 used both the Stargates to send
a significant fraction of the packets at different times dur-
ing the experiment, while the other nodes were connected
to only one of the Stargates for most of the time. The
gray dashed arrows depict the links used in the lower-tier
i.e., multi-hop routes among the Mica-Z motes. The bi-
directional arrows indicate that the link shifted its direction
during the experiment. The laptops and the Stargates com-
municated to each other using their 802.11 radios in ad-hoc
mode.

We cannot currently induce damage on this large struc-
ture, so we tested a NetSHM application that collects the
impulse response of the entire structure. The application
tasked the motes to collect data for 1 minute at 50Hz (3000
samples) while the structure was manually actuated to gen-
erate impulsive excitation. We time-stamped every sample
as it was received at the application and measured latency as
the time elapsed since the sensors completed the data. Fig-
ure 10 depicts the latencies incurred for transporting sam-
ples from each of the motes reliably to the PC. As one would
expect, the latency increases linearly for successive samples,
since all motes were rate-limited to 2 pkts/sec (each packet
carried 8 samples). We also conducted a test to demonstrate
the robustness of the system by failing one of the Stargates.
The latency of route recovery is depicted in Figure 11. Most
motes incurred an increase in latency of about 30-100 sec-
onds, some of which can be attributed to the route update
interval, and some to packet loss recovery times. Eventually,
all samples were recovered correctly at the base station.

4. CONCLUSIONS AND FUTURE WORK
This paper is an attempt to move away from a vision

of sensor networks as being necessarily application-specific.
Our design and validation of NetSHM suggests that, at
least for a class of high-data rate applications, there exists
an architecture that presents a fairly generic programming
abstraction and where many systems components (routing,
reliable transmission etc.) can be reused across applica-
tions. We conjecture that the NetSHM architecture might
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Table 1: Results of the Damage Detection and Localization Algorithms

Damaged test case Modal frequencies Average estimated %age loss of stiffness
found in Hz floor 1 (k1) floor 2 (k2) floor 3 (k3) floor 4 (k4)

C0 : all springs intact 2.6, 7.8, 12.0, 14.9 0.0 0.0 0.0 0.0
C1 : 2 springs removed from floor 4 2.6, 7.4, 7.7, 11.9, 14.8 0.1 0.073 -0.251 4.371
C2 : all springs removed from floor 4 2.6, 7.7, 11.8, 14.8 0.24 0.13 -0.18 8.814
C3 : 2 springs removed from floor 3 2.6, 7.8, 12.0, 14.7 -0.23 -0.05 4.486 -0.15
C4 : all springs removed from floor 3 2.6, 7.4, 7.7, 12.0, 14.6 0.99 -0.22 8.74 -0.31
C5 : 2 springs removed from floor 2 2.6, 7.8, 11.9, 14.8 0.68 4.734 -0.1 0.3
C6 : all springs removed from floor 2 2.6, 7.8, 11.7, 14.7 0.71 9.54 -0.28 -0.37
C7 : 2 springs removed from floor 1 2.6, 7.7, 11.9, 14.8 5.85 0.04 -0.56 -0.14
C8 : all springs removed from floor 1 2.6, 7.4, 11.9, 14.8 10.39 -0.05 -0.67 -0.13
C9 : all springs removed from floors 3 and 4 2.6, 7.7, 11.7, 14.5 1.13 -0.28 11.51 6.87
C10 : all springs removed from floors 1 and 4 2.6, 7.0, 7.4, 7.7, 11.6 14.7 -0.46 -0.78 9.21

be more broadly applicable to sensor networks in general,
but have deferred an examination of this question to future
work.
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