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ABSTRACT
This paper argues that a camera sensor network containing hetero-
geneous elements provides numerous benefits over traditional ho-
mogeneous sensor networks. We present the design and implemen-
tation of SensEye–a multi-tier network of heterogeneous wireless
nodes and cameras. To demonstrate its benefits, we implement a
surveillance application usingSensEyecomprising three tasks: ob-
ject detection, recognition and tracking. We propose novel mech-
anisms for low-power low-latency detection, low-latency wakeups,
efficient recognition and tracking. Our techniques show that a multi-
tier sensor network can reconcile the traditionally conflicting sys-
tems goals of latency and energy-efficiency. An experimental eval-
uation of our prototype shows that, when compared to a single-tier
prototype, our multi-tierSensEyecan achieve an order of magni-
tude reduction in energy usage while providing comparable surveil-
lance accuracy.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture Design; C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-time and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Camera sensors, Hierarchical sensor networks

1. INTRODUCTION

1.1 Motivation
The relentless pace of technological growth has led to the emer-
gence of a variety of sensors and networked sensor platforms that
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Camera Power Cost Features

Cyclops 33mW Unpriced 128x128, fixed-angle, 10fps
Web-Cam 600mW $75 640x480, auto-focus, 30 fps
PTZ Camera 1W $1000 1024x768, retargetable pan-tilt-

zoom, 30 fps

Table 1: Different camera sensors and their characteristics.

span the spectrum of cost, form-factor, resolution, and functional-
ity. As an example, consider camera sensors, where available prod-
ucts range from expensive pan-tilt-zoom cameras to high-resolution
digital cameras, and from inexpensive webcams and “cell-phone-
class” cameras to even cheaper, tiny cameras such as Cyclops [18]
(see Table 1). A similar set of options are becoming available
for sensor platforms, with choices ranging from embedded PCs to
PDA-class Stargates [21], and from low-power Motes [9, 15] to
even lower power systems-on-a-chip [1] (see Table 2). Due to these
advances, the design and deployment of camera sensor networks—
wireless networks of sensor nodes equipped with cameras—is now
feasible and useful in a variety of application scenarios.
Consider the following applications of camera sensor networks:
(i) environmental monitoring, where a network of wireless cam-
era sensors is used to monitor wild-life habitats, rare species in
remote locations and phenology (study of periodic biological phe-
nomena) without being disturbed by humans; (ii)ad–hoc surveil-
lance, where camera sensors are used in disaster management sce-
narios like fire and floods. Since pre-existing infrastructure may
be unavailable or destroyed in these settings, a wireless battery-
powered deployment is necessary.
One possible approach for designing a camera sensor application is
to choose a particular camera sensor and a suitable sensor platform
(see Tables 1 and 2) and program each node to perform all appli-
cation tasks. Such an approach yields a flat, single-tier network of
homogeneous sensor nodes. However, given the availability of sen-
sors and nodes with different capabilities and power requirements,
it is also feasible to design the same application by employing het-
erogeneous elements. In this approach, resource-constrained, low-
power elements are employed to perform simpler application tasks,
while more capable, high-power elements take on more complex
tasks. Doing so results in more judicious use of precious energy
resources. To illustrate, a surveillance application can employ low-
fidelity cameras to perform the simpler task of motion detection,
while high-fidelity cameras can be woken up on-demand for ob-
ject recognition and tracking. In contrast, in the single–tier ap-
proach, the choice of the camera sensor and the node is dictated by
the most-demanding application task, causing simpler tasks to con-
sume more resources than are necessary when executing on these
more capable elements.
Since power consumption is a critical design issue in sensor net-
works, a heterogeneous approach can optimize power consumption
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Platform Type Resources

Mica Mote Atmega128 84mW, 4KB RAM,
(6MHz) 512KB Flash

Yale XYZ OKI ArmThumb 7-160mW, 32K RAM,
(2-57 MHz) 2MB external

Stargate XScale PXA255 170-400 mW, 32MB RAM,
(100MHz–400MHz) Flash and CF card slots

Table 2: Different sensor platforms and their characteristics.

and maximize network lifetime when compared to the single-tier
approach. Consequently, in this paper, we study techniques for de-
signing multi-tier camera sensor networks[10]. By a multi-tier
network, we mean that the sensors are organized hierarchically into
multiple tiers. For instance, a two-tier surveillance application may
consist of low power cameras at the bottom tier that trigger higher
resolution cameras at the upper tier in an on-demand fashion. The
advantages of a multi-tier sensor network over a single-tier network
are many: low cost, high coverage, high functionality, and high re-
liability. Depending on how they are designed, single tier systems
often meet only a subset of these requirements. For instance, low
cost can be achieved by using a single tier of inexpensive sensors
but at the expense of functionality. High coverage can be achieved
using a dense deployment of untethered sensors that can be placed
anywhere but power considerations can sacrifice reliability. High
functionality can be achieved by employing high fidelity sensors
but at the expense of sacrificing coverage due to the high cost.
Thus, a single choice along the axes of power, cost, or reliability
will result in a sensor network that sacrifices one or more of the key
requirements. In contrast, by employing different elements to per-
form tasks with different requirements, multi-tier networks provide
a better balance of cost, coverage, functionality, and reliability.

1.2 Research Contributions
This paper presents design and implementation ofSensEye, a multi–
tier network of wireless sensor nodes and camera sensors that have
different capabilities across tiers. To the best of our knowledge,
this is the first work to demonstrate the benefits of employing a
multi-tier camera sensor network over traditional single-tier sensor
networks. The design and implementation ofSensEyehas resulted
in several contributions.
Whereas latency (performance) and energy-efficiency are conflict-
ing goals in a battery-powered single-tier network, we show that
a multi-tier network canachieve low latencies without sacrific-
ing energy-efficiency—something that is infeasible in traditional
single-tier networks.
To demonstrate that these conflicting goals can be reconciled in
a multi-tier network, we implement a simple surveillance applica-
tion usingSensEye. Our goal is not to build a better surveillance
application than that in the literature [12], rather it is to demon-
strate the benefits of multi-tier networks.SensEyesurveillance
comprises three tasks: object detection, recognition and tracking.
We propose numerous mechanisms and optimizations to achieve
low-latency, low-power object detection, accurate object localiza-
tion, low-latency inter-tier wakeup, low-power object recognition
and tracking. Overall, our design process illustrates how various
sensing and processing tasks should be mapped to different tiers of
a multi-tier network. Our mechanisms are designed to exploit re-
dundancies in camera coverage resulting from a dense deployment
of nodes. For instance, we demonstrate how multiple overlapping
cameras can collaborate to localize an object and how localization
can be exploited for energy-efficient wakeups.
We implementSensEyein a three-tier network comprising four

types of camera sensors on Motes, Stargates and embedded PCs.
An experimental evaluation of our prototype shows that in terms of
energy usage,SensEyeis better than a single-tier system by factors
of 9.75 and 6.3, when using Cyclops and CMUcam cameras respec-
tively. Despite this significant energy reduction,SensEyeprovides
similar detection performance, with only 6% more missed detec-
tions when compared to a single-tier system. Our component-level
benchmarks indicate that the detection latency and energy usage at
Tier 1 is an order of magnitude less than that at Tier 2. Our exper-
iments also reveal that the mean localization errors of a CMUcam
and a webcam are 20-35%and 4.8%, respectively, indicating that
while detection can be performed using lower-fidelity CMUcams,
tracking is best done using higher-fidelity webcams.
The remainder of the paper is structured as follows: Section 2
presents background and our system model. Section 3 presents the
design ofSensEyewhile Section 4 presents implementation details.
We present an experimental evaluation ofSensEyein Section 5 and
related work in Section 6. Finally, Section 7 presents our conclu-
sions.

2. BACKGROUND AND SYSTEM MODEL
In this section, we discuss common processing tasks in a camera
sensor network, followed by the system model and the key design
principles that govern our work.

2.1 Camera Sensor Network Tasks
A camera sensor network will need to perform several processing
tasks in order to obtain useful information from the video and im-
ages acquired by various camera sensors. Our work is motivated
by two applications, namely monitoring of rare species in remote
forests and ad–hoc surveillance in disaster management tasks. Both
applications have numerous characteristics in common and involve
three key tasks.
Object detection: First, the application needs to detect the pres-
ence of a new object whenever it enters the monitored environment.
To illustrate, the rare species monitoring application needs to detect
the presence of each animal that enters the monitored environment,
while ad–hoc surveillance needs to detect objects or people in the
monitored area. A good detection algorithm will minimize the la-
tency to detect each new object that enters the monitored area.
Object recognition: Once a new object is detected, it needs to be
classified to determine its type (e.g., a car versus a truck, a tiger ver-
sus a deer). This process, referred to as object recognition, enables
the application to determine if the object is of interest and whether
further processing is warranted. For instance, a surveillance sys-
tem may be interested in counting the number of cars not trucks
on a highway. In our work, we assume that an image database of
all interesting objects is available a priori, and the recognition step
involves determining if the newly detected object matches one of
the objects in this database.
Object tracking: Assuming the new object is of interest to the
application, it can be tracked as it moves through the environment.
Tracking involves multiple tasks: (i) computing current location of
the object and its trajectory, (ii) handoff of tracking responsibility
as object moves out of visual range of one camera sensor and into
the range of another, and (iii) streaming video or a sequence of still
images of the object to a logging store or a monitoring station.
In this work, our focus is restricted to detection, recognition and
tracking tasks and does not consider other tasks like video stream-
ing [13]. The goal is to devise a hardware and software architecture
to perform these tasks so as to optimize power consumption, with-
out sacrificing performance metrics such as latency and reliability.
As explained earlier, rather than choosing a single platform and a
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Figure 1: The multi-tier SensEyehardware architecture.

single type of camera sensor, our work focuses on multi-tier net-
works where detection, recognition and tracking may be performed
on different nodes and cameras to achieve the above goal.

2.2 System Model
Our work assumes a camera sensor network comprising multiple
tiers (see Figure 1). A canonical sensor node within each tier is as-
sumed to be equipped with a camera sensor, a micro-controller, and
a radio as well as on-board RAM and flash memory. Nodes are as-
sumed to be tetherless and battery-powered, and consequently, the
overall constraint for each tier is energy. Within each tier, nodes
are assumed to be homogeneous, while different tiers are assumed
to be heterogeneous with respect to their capabilities. In general,
we assume that the processing, networking, and imaging capabil-
ities improve as we proceed from a lower tier to a higher tier, at
the expense of increased power consumption. Consequently, to
maximize application lifetime, the overall application should use
tier-specific resources judiciously and should execute its tasks on
the most energy-efficient tier that has sufficient resource to meet
the needs of that task. Thus, different tasks will execute on differ-
ent tiers and various tiers of camera sensor network will need to
interact and coordinate to achieve application goals. Given these
intra- and inter-tier interactions, application design becomes more
complex—the application designer needs to carefully map various
tasks to different tiers and carefully design the various interactions
between tasks.
One of the goals ofSensEyeis to illustrate these tradeoffs while
demonstrating the overall benefits of the multi-tier approach. To
do so, SensEyeassumes a three-tier architecture (see Figure 1).
The lowest tier inSensEyecomprises Mote nodes [15] equipped
with 900MHz radios and low-fidelity Cyclops or CMUcam camera
sensors. The secondSensEyetier comprises Stargate [21] nodes
equipped with web-cams. Each Stargate is equipped with an em-
bedded 400MHz XScale processor that runs Linux and a web-cam
that can capture higher fidelity images than Tier 1 cameras. Each
Tier 2 node also consists of two radios—a 802.11 radio that is used
by Stargate nodes to communicate with each other, and a 900MHz
radio that is used to communicate with Motes in Tier 1. The third
tier of SensEyecontains a sparse deployment of high-resolution
pan-tilt-zoom cameras connected to embedded PCs. The camera
sensors at this tier are retargetable and can be utilized to fill small
gaps in coverage provided by Tier 2 and to provide additional re-
dundancy for tasks such as localization.
Nodes in each tier and across tiers are assumed to communicate
using their wireless radios in ad-hoc mode; no base-stations are
assumed in this environment. The radio interface at each tier is
assumed to be individually duty-cycled to meet application require-
ments of latency and lifetime constraint at each node. Consequently,
the application tasks need to be designed carefully since radios on

Figure 2: Software architecture ofSensEye.

the nodes (and nodes themselves) are not “always-on”.
Given the above system model, we present key design principles,
followed by the design and implementation ofSensEye.

2.3 Design Principles
Our design of theSensEyemulti-tier camera sensor network is based
on the following principles.

• Principle 1: Map each task to the least powerful tier with
sufficient resources:In order to judiciously use energy re-
sources, each sensing and processing task should be mapped
to the least powerful tier that is still capable of executing it
reliably within the latency requirements of the application—
running the task on a more capable tier will only consume
more energy than is necessary.

• Principle 2: Exploit wakeup-on-demand:To conserve en-
ergy, the processor, radio and the sensor on each node are
duty-cycled. Our system employs triggers to wake up a node
in an on-demand fashion and only when necessary. For ex-
ample, a higher-fidelity camera can be woken up to acquire
a high-resolution image only after a new object is detected
by a lower tier. By putting more energy-constrained higher-
tier nodes in sleep mode and using triggers to wake them up
on-demand, our system can maximize network lifetime.

• Principle 3: Exploit redundancy in coverage:The system
should exploit overlaps in the coverage of cameras when-
ever possible. For example, two cameras with overlapping
coverage can be used to localize an object and compute its
(x, y, z) coordinates; this information can then be used to in-
telligently wakeup other nodes or to determine the trajectory
of the object. Thus, redundancy in sensor coverage should
be exploited to improve energy-efficiency or performance.

3. SENSEYE DESIGN
SensEyeseeks to provide alow-latency yet energy-efficientcam-
era sensing solution. Latency and energy-efficiency are conflicting
system goals. To achieve low-latency sensing, sensors need to de-
tect, recognize and track new objects as they enter and move across
the field of view of the camera network and minimize missed ob-
jects. In contrast, energy-efficient sensing requires that sensors and
nodes are switched off as much as possible (duty-cycled), which
adversely impacts the latency of sensing and hence the reliability.
Duty-cycling a distributed camera network incurs other sources of
latency since wakeup triggers need to be propagated across dis-
tributed sensor nodes, and operating system latency is incurred for
switching from sleep state to active state.
The primary insight inSensEyeis thatcareful task allocation across
tiers enables the system to achieve low energy usage while provid-
ing latencies that are close to an always-on single-tier system. In
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this section, we present different components of theSensEyear-
chitecture (see Figure 2) and details of how these components are
handled in our multi-tier system.

3.1 Object Detection
The first task of a camera sensor network is to ensure that an object
is detected as soon as it enters, and before it leaves the field of view
of the network of cameras. While keeping the cameras always on
achieves low-latency detection, it is very energy-inefficient, since
cameras and nodes will continuously consume energy. On the other
hand, the camera and the sensor node can be duty-cycled and wo-
ken up periodically to acquire an image and detect presence of
new objects. The longer the period between successive images,
the higher the latency of detection, and lower the reliability. The
advantage, though, is the efficient use of energy resources.
In general, object detection requires little resources, and hence,
it can be performed at the most energy-efficient tier. At this tier,
since each wakeup consumes limited energy, the sleep period be-
tweensuccessive wakeups can be made small, thereby enabling
low-latency detection. In addition,SensEyeemploys a random-
ized duty-cycling algorithm where different cameras are woken up
at different times to further reduce the latency to detect an object.
Each camera and its node performs object detection via simple
frame differencing. Each camera acquires an background image
of the environment at system calibration time. The pixel difference
between each newly acquired image and the background image is
computed and this difference is used to flag the presence of a new
object. Observe that frame differencing is a relatively simple op-
eration, and hence,SensEyeemploys low-fidelity energy-efficient
sensors at Tier 1 for the task of object detection.

3.2 Object Localization
Once an object has been detected at Tier 1, nodes in Tier 2 need
to be woken up for further processing. To intelligently wakeup
the “correct” nodes in Tier 2, the Tier 1 nodes need to compute

the 3D coordinates of the object and then determine which Tier 2
nodes have cameras pointing at this location. The location of the
object can also be used by the retargetable Tier 3 cameras to get
corresponding angles of pan and tilt to view the object.SensEye
uses triangulation techniques for localization—if the object is si-
multaneously viewed from two cameras, and if the location and
orientation of the two cameras is known, then the location of the
object can be calculated. The key insight is that even though the
Tier 1 cameras are low-power and have coarse resolution, they can
providesufficiently accurate localizationfor making decisions on
where the target is, and which Tier 2 nodes to wakeup.
Accurate localization requires three elements: (a) camera calibra-
tion to find the relative locations and orientations of cameras at dif-
ferent tiers, (b) synchronized readings at multiple cameras to limit
localization error in the case of moving objects, and (c) location
estimation based on optics and geometry.
Our localization scheme works for a 3D setting and assumes that
cameras are calibrated at system setup time and their orientations
are known relative to a global reference frame. The calibration
process can be automated using a combination of tilt sensors and
positioning systems such as GPS and Cricket [11, 16]. To enable
synchronized sampling, different Tier 1 devices are assumed to be
synchronized using a single reference beacon from a Tier 2 node
(using a time-synchronization protocol such as RBS [7]).
Camera localization in 3D consists of three steps as shown in Fig-
ure 3. First, each camera calculates the vector along which the
object’s centroid is located with respect to its own frame of refer-
ence. Second, these vectors are rotated and translated to the global
frame of reference using information about each camera’s location
and orientation. Finally, the location of the object is computed from
the closest point of approach between the two vectors. We describe
these steps in more detail below.
Step 1: Calculation of vector along direction of object location
As shown in Figure 3(a), the camera coordinate space is assumed to
be the following: the image plane is the X-Y plane and the central
axis perpendicular to the image plane is the Z axis. The center of
the camera lens is at pointP2 : (0, 0, f), wheref is the focal length
of the lens, and the centroid of the image of the object on the image
plane isP1 : (x, y, 0). The vector,v, along which the object’s
centroid lies is, therefore, computed asv = P2 −P1 = {x,y, f}.
Step 2: Transforming vector to global reference frame
To translate the object’s vector,v, from the camera’s reference
frame to the global reference frame, we use the rotation and trans-
lation matrices obtained during calculation of the camera orienta-
tions. Each camera’s orientation consists of a translation and two
rotations. The translation from the global reference origin to the
camera location is denoted by a translation matrixT. Figure 3(b)
shows the orientation of a camera as a composite of two rotations
Initially, the camera is assumed to positioned with its central axis
along the Z axis and its image plane parallel to the global X-Y
plane. First, the camera is rotated by an angle ofθ in the counter
clockwise direction about the Z axis, resulting in X’ and Y’ as the
new X and Y axes. Next, the camera is rotation by an angleφ in
the clockwise direction about the X’ axis, resulting in Y” and Z’
as the new Y and Z axes. The two rotations are represented by a
rotation matrixR and can be used to reverse transform the vector
calculated in Step 1 to the global reference frame. Ifv1 andv2 are
the two vectors along the direction of object location from cam-
eras 1 and 2 respectively, the two corresponding vectors in global
reference frame are:

v′
1 = R1.v1 + T1 (1)

v′
2 = R2.v2 + T2 (2)

where,R1 andR2 are the rotation matrices andT1 andT2 are the
translation matrices for the two cameras respectively. The rotation
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matrixR takes the following form:

R =

 Cosθ −SinθCosφ −SinθSinφ 0
Sinθ CosθCosφ CosθSinφ 0

0 −Sinφ Cosφ 0
0 0 0 1

 (3)

where,θ andφ are rotation angles as described in Step 2.
Step 3: Object Location using Closest Point of Approach
Given the two vectors,v′

1 andv′
2, their intersection is the location

of the object as shown in Figure 3(c). Since the lines are in three
dimensions they are not guaranteed to intersect especially due to
error in centroid computation and camera calibration. A standard
technique used for approximating the intersection is using the Clos-
est Point of Approach [5]. The closest point of approach gives the
shortest distance between the two lines in three dimensions. We use
this method to get pointsCP1 andCP2, the closest points between
vectorsv′

1 andv′
2 respectively. The location of the object is given

by the mid-point ofCP1 andCP2.

3.3 Inter-tier Wakeup
Due to the higher power requirements of Tier 2 nodes and cameras
(e.g.: Stargate and the web-cams in Table 1 and 2), each Tier 2 node
is normally in sleep (or suspend) mode to conserve energy. Once
an object is detected at Tier 1, one or more Tier 2 nodes need to be
woken up for further processing. Inter-tier wakeup is a challenging
problem both from an energy and latency perspective.
From an energy perspective, inter-tier wakeup should ensure that
there are no wasteful wakeups of Tier 2 nodes. Localization at
Tier 1 is a key component of our energy-efficient wakeup algo-
rithm since it can be used to make intelligent decisions on precisely
which node to wakeup. We assume that Tier 1 nodes know the vi-
sual range of each Tier 2 camera in their vicinity (from system cal-
ibration), and hence, can use the localized coordinates of the object
to determine the most appropriate Tier 2 node with a camera point-
ing at this location. If no appropriate Tier 2 node can be identified,
SensEyewakes up a Tier 3 retargetable camera, and uses its pan
and tilt capability to point it to the location where the target was
localized. Localization is feasible only when at least two nodes can
view the object—if only a single Tier 1 sensor detects an object,
then localization can not be performed and the node must wake up
all Tier 2 nodes that have overlapping coverage with itself (this list
depends on the initial placement).
From a latency perspective, the separation of detection and recog-
nition tasks across two different tiers introduces latency between
the execution of these two tasks. The latency includes the delay
in receiving and processing the wakeup packet as well as the delay
in waking up the Tier 2 node. To ensure that recognition is per-
formed before a moving object leaves the visual range of the Tier
2 camera, this latency should be as small as possible.SensEyeuses
several optimizations to reduce the total latency of detection and
recognition. The wakeup process begins by the transmission of a
wakeup packet to a Tier 2 node (similar to “wakeup-on-wireless”
[6]). Upon receiving this wakeup message, the Tier 2 node needs
to transition from the suspend state to awake state. This transition
duration is kept small by ensuring that only the bare minimum of
device drives are running—thereby keeping the driver load times
small during wakeup. Several additional suspend-to-active switch-
ing optimizations are also performed as discussed in [20].

3.4 Object Recognition
Once a new object is detected at Tier 1, it needs to be classified
using a recognition algorithm to determine if it is of interest to
the application. The recognition step eliminates uninteresting ob-
jects and helps focus application resources on objects that merit

further attention. InSensEyerecognition involves obtaining an im-
age of the object, identifying object features and searching the im-
age database for a match. Clearly, accurate recognition requires a
high-fidelity image of the object and significantly greater process-
ing and memory resources than available on a Tier 1 node such as
a Mote (6MHz processor and 4KB RAM). Consequently,SensEye
executes the recognition algorithm at Tier 2 using higher-fidelity
web-cams and the more-capable 400MHz XScale processors on the
Stargates.
Object recognition is well studied in the vision community, and a
slew of techniques have been designed [5]. Since the focus of our
work is on the design of a multi-tier camera sensor network, as op-
posed to computer vision, we assume that any of these algorithms
can be employed inSensEye. As proof of concept, we implement
two recognition algorithms from the literature: a simple face recog-
nition algorithm [14] and a second algorithm that isolates the object
using connected components [5, 19], and uses a simple color-based
heuristic to match the object to the image database. While these
algorithms are adequate for our purpose, more sophisticated recog-
nition algorithms can be employed in real-world settings [12].

3.5 Object Tracking
Tracking of moving objects involves multiple sensing and process-
ing tasks—continuous object detection as it moves through the field
of view of cameras, object recognition to ensure that the object of
interest is tracked across cameras, and finally trajectory prediction
to estimate the movement pattern of the object.
Object tracking inSensEyeinvolves a combination of detection,
localization, inter-tier wakeup as well as recognition. As the object
moves through the covered region, different Tier 1 nodes detect
the target. If multiple nodes detect the target, localization can be
used to accurately pinpoint the location of the target. Continuous
localization can be used to track the path of the moving object. Our
current prototype can handle slow moving objects, and trajectory
prediction schemes for fast moving objects (using techniques such
as [25]) is the subject of ongoing research.

4. SENSEYE IMPLEMENTATION
This section describes the implementation ofSensEyebased on the
design discussed in the previous section.

4.1 Hardware Architecture
Our SensEyeimplementation uses four types of cameras—the Ag-
ilent Cyclops [18], the CMUcam Vision sensor [4], a Logitech
Quickcam Pro Webcam and a Sony PTZ camera—and three dif-
ferent platforms—Crossbow Motes [15], Intel Stargates [21] and a
mini-ITX embedded PC.SensEyeis a three-tier network, with the
first two tiers shown in Figure 4.
Tier 1: Tier 1 of SensEyecomprises a low-power camera sensor
such as Cyclops [18] connected to a low-power Mote [15] sen-
sor platform. The Cyclops camera is currently available only as
a prototype. Therefore, we use the Cyclops platform for our in-
dividual component benchmarks and substitute it with a similarly
constrained but higher power CMUcam for our multi-tier experi-
ments.
The Cyclops platform comprises of a Xilinx FPGA, an Agilent
ADCM–1700 CMOS camera module and an ATMega128 micro-
controller. The board attaches using a standard 32-pin connector to
a Mote, and communicates to it using UART. The software distri-
bution for Cyclops [18] provides support for frame capture, frame
differencing and object detection.
The CMUcam is a less power-optimized camera that comprises an
OV7620 Omnivision CMOS camera and a SX52 micro-controller.

233



(a) Tier 1 (b) Tier 2

Figure 4: Prototype of a Tier 1 Mote and CMUcam and a Tier
2 Stargate, web-cam and a Mote.
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The CMUcam connects to a Mote using a serial interface, as shown
in Figure 4(a). The CMUcam has a command set for its micro-
controller, set camera parameters, select power-usage mode, cap-
ture images, perform frame differencing and tracking.
Tier 2: A typical Tier 2 sensor comprises of a more-capable plat-
form and camera and a wakeup circuit to wakeup the node from the
sleep or suspend state upon receiving a trigger from a Tier 1 node.
In our implementation, as shown in Figure 4(b), we use a Intel Star-
gate sensor platform with an attached Mote that acts as the wakeup
trigger. Since the Stargate does not have hardware support for be-
ing woken up by the Mote, we used a relay circuit described in
Turducken [20] for this purpose. The Logitech Webcam connects
to the Stargate through the USB port.
Tier 3: A Tier 3 node comprises a Sony SNC-RZ30N PTZ camera
connected to an embedded PC running Linux.

4.2 Software Architecture
The software framework ofSensEyeis shown in Figure 5. The
description of our software framework assumes that Tier 1 com-
prises Motes connected to CMUcam cameras. Substituting a CMU-
cam with a Cyclops involves minimal change in the architecture.
The first two tiers ofSensEyecomprise four software components:
(i) CMUcam Frame Differentiator, (ii) Mote–level Detector, (iii)
Wakeup Mote, and (iv) Object Recognition at the Stargate. Follow-
ing is the description of each component’s functionality.

CMUcam Frame Differentiator: The CMUcam receives peri-
odic instructions from the Mote to capture an image for differenc-
ing. On each such instruction, the CMUcam captures the image in
view, quantizes it into a smaller resolution frame, performs frame
differencing with the reference background frame and sends back
the result to the Mote. Frame differencing results in image areas
where objects are present to be highlighted (by non–zero differ-
ence values). The CMUcam has two modes of frame differencing,
(i) a low resolution mode, where it converts the current image (of
88× 143 or 176× 255) to a8× 8 grid for differencing, or (ii) high
resolution mode, where a16×16 grid is used for differencing. The
frame differencing is at very coarse level and hence has relatively
high error to estimate location of the object or its bounding box.

Mote–Level Detector: The function of the Tier 1 Mote is to con-
trol the CMUcam and send object detection triggers to the higher

level nodes. On startup, the Mote sends initialization commands
to the CMUcam, to set its background and frame differencing pa-
rameters. Periodically, based in its sampling rate, the Mote sends
commands to the CMUcam to capture an image and perform frame
differencing. The CMUcam responds with the frame difference re-
sult. The Mote uses a user–specified threshold and the returned
frame difference result to decide whether an event (object appear-
ance or object motion) has occurred. If an event is detected, the
Mote broadcasts a trigger for the higher tier. On no event detec-
tion, the Mote sleeps till the next sampling time. Additionally, the
Mote duty-cycles the CMUcam by putting it to sleep between two
sampling instances.

Wakeup Mote: The Mote connected to the Stargate receives trig-
gers from the lower tier Motes and is the interface between the
two tiers. On receiving a trigger, the Mote can decide whether to
wakeup the Stargate for further processing. Typically, the local-
ized coordinates are used for this purpose. Rather than actually
computing the object coordinates at a Tier 1 Mote, which requires
significant coordination between the Tier 1 nodes, our implementa-
tion relies on a Tier 2 Mote to compute these coordinates—the Tier
1 nodes simply piggyback parameters such asθ, φ and the centroid
of the image of the object with their wakeup packets. The Tier 2
Mote then uses techniques described in Section 3.2 to derive the
coordinates. The Stargate is then woken up if the object location is
within its field of view, otherwise the trigger is ignored.

High Resolution Object Detection and Recognition: Once the
Stargate is woken up, it captures the current image in view of the
webcam. Frame differencing and connected component labeling [5,
19] of the captured image along with the reference background im-
age is performed. This yields the pixels and boundaries where the
potential objects appear in the image. Smoothing techniques based
on color threshold filtering and averaging of neighboring region are
used to remove noise pixels. Each potential object then has to be
recognized. In our current implementation, we use an averaging
scheme based on the pixel colors on the object. The scheme pro-
duces an average value of the red, green and blue components of the
object. The values can be matched against a library of objects and
the closest match is declared as the object’s classification.SensEye
can be extended by adding sophisticated classification techniques,
face recognition and other vision algorithms. We evaluate a face
recognition system in the Experimental section to get an idea of its
latency and power requirements.

PTZ Controller: The Tier 3 retargetable cameras are used to fill
gaps in coverage and to provide additional coverage redundancy.
The pan and tilt values for the PTZ cameras are based on localiza-
tion techniques as described before. The cameras export a HTTP
API for program–controlled camera movement. We use one such
HTTP–based camera driver [3] to retarget the Tier 3 PTZ cameras.

5. EXPERIMENTAL EVALUATION
In this section we present detailed experimental evaluation ofSens-
Eye. Specifically, we evaluate several power consumption, latency
and camera benchmarks to characterize individual components and
compare single–tier and multi–tierSensEyesystems.

5.1 Component Benchmarks
In this section we measure benchmarks of individual components
that collectively form theSensEyesystem. The benchmarks re-
ported are latency and energy usage, localization accuracy and ob-
ject recognition performance.
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Mode Latency Average Power Energy
(ms) Current Consumption Usage

(mA) (mW) (mJ)

Mote Processing 136 19.7 98.5 13.4
CMUcam Object 132 194.25 1165.5 153.8

Detection

Table 3: SensEyeTier 1 (with CMUcam) latency breakup and
energy usage. Total latency is 136 ms and total energy usage is
167.24 mJ.

5.1.1 Latency and Energy Consumption
Since minimizing energy usage is an important goal ofSensEye,
we systematically breakdown the power consumption and latency
of each hardware and software component in its different modes of
operation. Tables 3 and 4 report latency, average power consump-
tion and the energy usage for object detection at Tier 1 and Table 5
provides a similar breakdown for object recognition at Tier 2.

Tier 1: As seen from Table 3, 97% of the total latency of object
detection at Tier 1, i.e., 132 ms out of 136 ms, is due to CMUcam
processing (frame capture and frame differencing). Also, due its
higher power requirements, CMUcam uses 92% of the energy, i.e.,
153.8 mJ out of 167.2 mJ. In contrast, the Cyclops (refer Table 4)
is much more energy efficient as compared to the CMUcam and
consumes 33 mW for 892 ms, which is better than the CMUcam
by a factor of 5.67 in terms of energy usage. However, the latency
of detection at the Cyclops is around 900 ms, which is more than
6 times as much as the CMUcam. This latency number is an arti-
fact of the current Cyclops hardware and can be reduced to around
200ms with optimizations expected in future revisions of the node.
A breakup of the energy consumption of the Cyclops camera for
detection is given in Table 4.
Tier 2: The processing tasks at Tier 2 ofSensEyecan be divided
as: wakeup from suspend of the Stargate, stabilization after wakeup
for program to start executing, camera initialization, frame grabber,
vision algorithm for detection and recognition and finally the shut-
down procedure for suspend, as shown in Table 5. The total latency
at Tier 2 to complete all operations is 4 seconds. The largest delays
are during camera initialization (1.28 s) and shutdown for suspend
(1 s), with corresponding energy usages of 1725.4 mJ and 768.5
mJ. The least latency task is the algorithm used for object detection
and recognition, which has a latency of 105 ms and the least energy
usage of 144.2 mJ.

The comparison of energy consumption and latency reveals some
of the benefits of using a two-tier rather than a single-tier cam-
era sensor network. Every wakeup to shutdown cycle at Tier 2
consumes around 28 times as much energy as similar task at Tier
1 comprising of CMUcams. When the Tier 1 comprises of Cy-
clops cameras instead of CMUcams the ratio of energy usage is
142. There are two reasons for this large difference in energy con-
sumption between tiers. First, the latency associated with Linux
operating system wakeup from suspend state is significantly greater
than the wakeup latency on a highly limited Mote platform that
runs TinyOS. Second, the Stargate platform consumes significantly
greater power than a Mote during the wakeup period. The net ef-
fect of greater latency and greater power consumption results in
significantly greater total energy consumption for Tier 2.

5.1.2 Localization
As described in 3.2, localizing a detected object has several bene-
fits. Localization at Tier 1 can be used to wakeup appropriate (e.g.,
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Mode Latency Current Power Energy
(ms) (mA) (mW) Usage(mJ)

A: Object Detection 892 11 33 29.5
B: Idle – 0.34 1 –

Table 4: SensEyeTier 1 (with Cyclops) latency breakup and
energy usage.
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Mode Latency Current Power Energy
(ms) (mA) (mW) Usage(mJ)

A: Wakeup 366 201.6 1008 368.9
B: Wakeup Stabilization 924 251.2 1256.5 1161
C: Camera Initialization 1280 269.6 1348 1725.4
D: Frame Grabber 325 330.6 1653 537.2
E: Object Recognition 105 274.7 1373.5 144.2
F: Shutdown 1000 153.7 768.5 768.5
G: Suspend – 3 15† –

Table 5: SensEyeTier 2 Latency and Energy usage breakup.
The total latency is 4 seconds and total energy usage is 4.71 J.
† This is measured on an optimized Stargate node with no peripherals attached.

nearest) Tier 2 nodes for further processing as well as compute tra-
jectory information for tracking and handoff purposes.
Figure 6 is a scatter plot of 2D localization accuracy for objects
using the CMUcam and the Webcam. The CMUcam uses8 × 8
and16 × 16 matrix representations of the captured image (con-
verted from88× 143 and176× 255 pixels respectively) for frame
differencing. This is representative of a typical centroid compu-
tation that we would expect on Cyclops nodes since these devices
are resource-constrained both in memory and computation capabil-
ity. The webcam uses a80 × 60 representation calculated from a
320 × 240 pixels image. As seen from the figure, the webcam has
the least localization error and the CMUcam using a8×8 represen-
tation the largest error. The average error for each configuration is
35%, 20.5% and 4.85% respectively. The trends depicted in the fig-
ure indicate that if coarse location information is desired or suffices
to wakeup higher tier nodes, Tier 1 based localization is sufficient.
If accurate location information is required localization should be
performed at the second tier ofSensEye.

5.1.3 Object Recognition
To get an idea of the latency and power consumption of a recog-
nition algorithm, we used a neural network based face recognition
system [14]. The system is very constrained and uses face images
of 960 pixels and a 960x40x1 neural network for learning. The sys-
tem when executed on a Stargate to recognize faces had the follow-
ing measurements: average latency 228 ms, average current draw
244.8 mA, average power consumption 1.23 W and average energy
usage of 280.44 mJ. These measurements do not exactly reflect the
increments of energy usage ofSensEyeas the face recognizer is not
integrated into it. The measurements represent a crude estimate of
the additions to latency and energy usage. We intend to replace the
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Figure 7: Placement of Tier 1 Motes and Tier 2 Stargates in
SensEye.

existing pixel averaging–based recognizer inSensEyewith other
sophisticated recognition algorithms in future work.

5.2 Comparison ofSensEyewith a Single-Tier
Network

In this section we present an evaluation of the fullSensEyesystem
and compare it to a single-tier implementation of our algorithms.
The comparison is along two axes—energy consumption and sens-
ing reliability. Sensing reliability is defined as the fraction of ob-
jects that are accurately detected and recognized.
In our experiment, circular objects were projected onto a wall with
an area of3m × 1.65m. Objects appeared at random locations
sequentially and stayed for a specified duration. Only one object
was present in the viewable area at any time. Object appearances
were interspersed with periods of no object being present in the
viewable area. A set of four Motes, each connected to a CMUcam,
constituted Tier 1 and two Stargates, each connected to a webcam,
constituted Tier 2 ofSensEye. Tier 1 Motes used a sampling period
of 5 seconds and their start times were randomized. The object
appearance time was set to 7 seconds and the interval between ap-
pearances was set to 30 seconds. The single–tier system consisted
of the two Stargate nodes which were woken up every 5 seconds
for object detection. This differs fromSensEyewhere a Stargate is
woken up only on a trigger from Tier 1. The nodes at both the tiers
were placed in such a manner that each tier covered the entire view-
able region as shown in Figure 7. The experiment used 50 object
appearances for measuring the energy and reliability metrics.

5.2.1 Energy Usage
We use two metrics to compare the energy usage betweenSensEye
and the single–tier system, energy usage when awake and energy
usage in suspend mode.
Tables 6 and 7 report the number of wakeups and details of de-
tection at each component of the single–tier system andSensEye
respectively. As can be seen from the tables, the Stargates of the
single–tier system wakeup more often than the Stargates at Tier 2
of SensEye. A total of 621 wakeups occur in the single–tier system,
whereas 58 wakeups occur at Tier 2 ofSensEye. The higher num-
ber of wakeups with the single–tier are due the periodic sampling
of the region to detect objects. Of out the total 621 wakeups, an ob-
ject is detected only 74 times in the single-tier system whereas in
SensEyeTier 1 performs initial detection and the Tier 2 Stargates

Component Total On Wakeup Energy
Wakeups Object No Object Usage

Found Found (Joules)

Stargate 1 311 32 279 1464.8
Stargate 2 310 42 268 1460.1

Table 6: Number of wakeups and energy usage of a Single–tier
system. Total energy usage of both Stargates when awake is
2924.9 J. Total missed detections are 5.

Component Total On Wakeup Energy Cyclops
Wakeups Object No Object Usage Expected

Found Found (Joules) Energy(J)

Mote 1 304 15 289 50.7 8.96
Mote 2 304 23 281 50.7 8.96
Mote 3 304 27 277 50.7 8.96
Mote 4 304 10 294 50.7 8.96

Stargate 1 27 23 4 127.17 127.17
Stargate 2 29 25 4 136.59 136.59

Table 7: Number of wakeups and energy usage of eachSensEye
component. Total energy usage when components are awake
with CMUcam is 466.8 J and with Cyclops is 299.6 J. Total
missed detections are 8.

are woken up fewer times— resulting in lower energy usage. The
Tier 1 sensor nodes are cumulatively woken up 1216 times. The
energy usage ofSensEyeduring the experiment is 466.8 J, as com-
pared to 2924.9 J by the single–tier node, a factor of 6.26 reduction.
If the CMUcams inSensEyewere replaced by Cyclops cameras, a
factor of 9.75 reduction in energy usage is obtained.
As reported in [18], the Cyclops with Mote consumes 1 mW in its
sleep state whereas an optimized Stargate consumes 15 mW in sus-
pend mode. The CMUcam has a power consumption of 464 mW in
sleep mode and is highly unoptimized. Thus, in the suspend state,
the Tier 2 node consumes more than an order of magnitude more
power than the Tier 1 nodes with Cyclops cameras. For our ex-
perimental setting of 30 seconds of idle time between objects, this
corresponds to an energy reduction by a factor of 33 forSensEye.

5.2.2 Sensing Reliability
Next we compare the reliability of detection and recognition of the
two systems described in the experimental setup. The single–tier
system detected 45 out of the 50 object appearances andSensEye
detected 42—a 6% decrease in sensing reliability. The result shows
the efficacy of usingSensEyeinstead of a single-tier network, as
SensEyeprovides similar detection performance (6% more missed
detections) at an order of magnitude less energy requirements.
The sensing reliability ofSensEyeis dependent on the time for
which an object is in view, the sampling period at Tier 1 and speed
of the object if it is moving. Since increasing sampling period is
same as increasing time for which object in view, we study the
effect of different times for which object is view on sensing reli-
ability. Figure 8(a) plots the fraction of undetected objects with
object in–view timings of 5,7 and 9 seconds. As seen from the fig-
ure, when an object is in view for 5 seconds, 52% objects are not
detected. With a time of 9 seconds for each object to be in view,
the percentage drops to zero. A timing of 7 seconds yields an inter-
mediate value of 16% undetected objects.
To study the effect of speed of moving objects on sensing reliabil-
ity, we conducted an experiment where objects moved across the
viewable area. The object started from a random point on one side
of the rectangular area and exited from another random point on
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Figure 8: SensEyesensing reliability and coverage.

the other side. The sampling period used at the Tier 1 nodes was 5
seconds. Figure 8(b) plots the percentage of undetected objects at
different speeds of the moving object. As can be seen, at the slow-
est considered speed of 0.2 m/s, a sampling rate of 5 seconds is able
to detect all objects atleast once. A speed of 0.6 m/s results in 62%
undetected objects. The trend shown is intuitive, given a sampling
rate, higher speeds lead to higher undetected objects. Based on the
desired probability of detection, the plots can be used to choose
sampling rates for different object movement speeds.

5.2.3 Coverage
A key benefit ofSensEyeis that more sensing elements can be
placed at lower energy cost than a single-tier architecture. This
givesSensEyegreater spatial redundancy between nodes and ben-
efits both the latency of object detection as well as the accuracy of
localization. We now look at the overlapping coverage provided
by the Tier 1 nodes and the Tier 2 nodes (also the nodes of the
single–tier network). Figure 8(c) plots, for each component, the
cases when only a single node covered and detected a object. As
can be seen, the coverage of Mote2 and Mote 3, which were cen-
trally placed, shared a lot of area with the other Motes. Hence these
nodes are woken up most and also have the most redundant wake-
ups as compared to Mote1 and Mote4, which were placed at the
corners. The Tier 2 Stargates also have a small overlapping region
and are woken up a small fraction of times redundantly. Based on
the coverage and overlapping nodes woken up for detection, 54%
objects can be localized inSensEyewhereas 36% can be localized
in a single-tier network comprising only the Stargate nodes. This
metric of coverage can be used to guide further node placements to
reduce or increase redundancy, in order to minimize energy usage
or increase localization opportunities respectively.

5.2.4 Coverage with Tier 3 Retargetable Cameras
To test the coverage and retargatable feature of the Tier 3 PTZ cam-
eras, we measure the number of times a Tier 3 node successfully
views an object after its pan and tilt movements. The experimen-
tal setup had 40% overlapping coverage among Tier 1 nodes and
the PTZ camera could view at most a quarter of the total cover-
age area at any time. When an object was detected by more than
one Tier 1 node, previously described 3D localization techniques
were used to calculate the pan and tilt values and retarget the Tier
3 camera. Out of the 50 object appearances, the PTZ camera could
view 46—a 92% success rate. The experiment verifies that 3D lo-
calization techniques along with retargetable cameras have a high
success rate and are useful to improve coverage.

5.2.5 Sensitivity to System Parameters
SensEyehas several tunable parameters which effect energy usage
and sensing reliability. In this section, we explore the sensitivity to

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5  6  7  8  9  10

Po
we

r C
on

su
m

pt
io

n 
(m

W
)

Sampling Period (seconds)

Power consumption at Tier 1

Mote
Cmucam

Total

 0

 1

 2

 3

 4

 5

 6

 7

 30  40  50  60  70  80  90  100

Di
st

an
ce

 (f
ee

t)

Condifence Threshold

Maximum Detection Distance at Tier 1

(a) Sampling period (b) Confidence threshold

Figure 9: Sensitivity to SensEyesystem parameters.

two important system parameters, sampling rate and camera detec-
tion threshold.
The power consumption at Tier 1 is a function of the sampling pe-
riod used to probe the CMUcam and check for object detections.
Figure 9(a) plots the power consumption at a Mote with increasing
values of sampling period. The sampling period is varied from 100
ms to 10 seconds and the power consumption at these two ends is
137 mW and 105.7 mW respectively. While the power consump-
tion reduces with increasing sampling period as expected, it quickly
plateaus since the large sleep power consumption of the CMUcam
dominates at lower sampling periods.
From a sensing reliability perspective, each Mote uses a confidence
threshold value to compare with the confidence with which a CMU-
cam reports a detection. The threshold determines when triggers
are sent to Tier 2. A higher threshold means closer objects will be
detected more easily than farther objects and a lower threshold can
more easily detect objects at larger distances. The trend is verified
by the plot shown in Figure 9(b). We varied the confidence thresh-
old from 30 to 100 and measured to maximum distance at which
objects are flagged as detected and its trigger sent to Tier 2. As
can be seen in the figure, a threshold of 30 can detect objects till a
distance of 6.5 feet and with thresholds greater than 80 the maxi-
mum distance drops to less than 1 feet. Choosing a good threshold
is important since it controls the false positives and false negatives,
and hence the energy consumption and reliability of the system.

6. RELATED WORK
SensEyedraws upon numerous research efforts in camera sensors,
power management, sensor placement and surveillance, which we
review here.
Multimedia Sensor Networks: Several studies have focused on
single-tier camera sensor networks. Panoptes [24] is an example of
a video sensor node built using a Intel StrongARM PDA platform
with a Logitech Webcam as the vision sensor. The node uses the
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802.11 wireless interface and can be used to setup a video–based
monitoring network. Panoptes is an instance of a single-tier sen-
sor network and is not a multi-tier network likeSensEye. A Tier
2 node ofSensEyeis similar to Panoptes, with additional support
for network wakeups and optimized wakeup-from-suspend energy
saving capability. Panoptes also incorporates compression, filtering
and buffering and adaptation mechanisms for the video stream and
can be used by Tier 2 nodes ofSensEye. Other types of multimedia
sensors, like audio sensors [23], have also been used for calibration
and localization applications.
Video Surveillance: A distributed video surveillance sensor net-
work is described in [8]. The video sensor network is used to solve
the problem of attention to events in presence of limited computa-
tion, bandwidth and several event occurrences. The system imple-
ments processing at cameras to filter out uninteresting and redun-
dant events and tracks abnormal movements. The CVSN Project
[2] focuses on developing distributed vision processing techniques
for counting the number of people in an area.
Another example of a single-tier video surveillance and monitor-
ing system is VASM [17]. The main objective of the system is to
use multiple, cooperative video sensors for continuous tracking and
coverage. The system develops sophisticated techniques for target
detection, classification and tracking and also a central control unit
to arbitrate sensors to tracking tasks. A framework for single-tier
multi-camera surveillance is presented in [12]. The emphasis of
the study is efficient tracking using multi-source spatio-temporal
data fusion, hierarchical description and representation of events
and learning-based classification. The system uses a hierarchical
master-slave configuration, where each slave camera station tracks
local movements and relays information to the master for fusion
and global representation. While our general aim is to build similar
systems, we focus on systems, networking and performance issues
in a multi-tier network using video surveillance as an application.
The vision algorithms and cooperation techniques of the above sys-
tems can extend capabilities ofSensEye.
Sensor Placement:An important criteria of sensor networks is
placement and coverage. Single tier placement of cameras is stud-
ied in [22]. The paper solves the problem of efficient placement
of cameras given an area to be covered to meet task–specific con-
straints. This method provides solutions for the single–tier place-
ment problem and is useful to place each tier ofSensEyeindepen-
dently. Some of these techniques apply to placement of nodes in
SensEyebut need to be extended for multi–tier settings.
Power management: Power management schemes, like wake–
on-wireless [6] and Turducken [20], are techniques to efficiently
use the limited battery power and thus extend lifetime of sensor
platforms. The wake–on–wireless solution uses a incoming call
to wakeup the PDA and reduces power consumption by shutting
down the PDA when not in use. Turducken uses a combination of
devices, a laptop, a Stargate and a mote, and uses lower subsystems
to reduce power consumption and wakes up the more power hungry
devices only when required. TheSensEyeTier 2 node is optimized
using both the above solutions.

7. CONCLUSIONS
In this paper, we argued about the benefits of a multi-tier camera
sensor network over a single-tier network and presentedSensEye,
a multi-tier camera sensor network. Using an implementation of
a surveillance application onSensEyeand extensive experiments,
we demonstrated that a multi-tier network can achieve an order of
magnitude reduction in energy usage when compared to a single-
tier network, without sacrificing reliability.
As part of future work we plan to study several issues of multi–tier

networks. We aim to develop solutions for efficient placement and
self–calibration of camera sensors. In this study, reduction of en-
ergy usage was the primary goal, other tradeoffs, like system cost
and coverage reliability, also need to be studied. Several design is-
sues and their impact on performance of multi–tier networks need
attention. A few examples being, the optimal number of tiers in
a multi–tier network, techniques to organize nodes into tiers and
static and dynamic allocation of tasks to sensors to minimize en-
ergy usage and meet latency and accuracy requirements.
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