
 1 of 7

SENSOR NETWORKS FOR SITUATION MANAGEMENT: A BIOMIMETIC MODEL

Kennie H. Jones, Kenneth N. Lodding
National Aeronautics and Space Administration

Hampton, VA

and Stephan Olariu, Larry Wilson
Old Dominion University

Norfolk, VA

and Chunsheng Xin
Norfolk State University

Norfolk, VA

ABSTRACT

Promises of ubiquitous control of the physical environment
by massively-deployed wireless sensor networks open
avenues for new applications in support of situation
management. Recent sensor network research has
concentrated on developing techniques for performing
relatively simple tasks with minimal energy expense,
assuming some form of centralized control. Unfortunately,
centralized control is not conducive to situation
management as it allows single points of failure and does
not scale to massive size networks. We propose a new way
of looking at massively-deployed sensor networks,
motivated by lessons learned from the way biological
ecosystems are organized. We demonstrate that in our
model fully distributed data aggregation and integration
can be performed in a scalable fashion where individual
motes operate based on local information, making local
decisions that are aggregated across the network to
achieve globally-meaningful effects. This exemplifies the
robust, fault-tolerant infrastructure required for successful
situation management systems.

INTRODUCTION

Optimal situation management requires intelligent
decisions based on fresh and timely information.
Furthermore, many applications require high fidelity
information that can only be acquired in situ. No new
technology shows more promise for meeting these
demands than sensor networks. Indeed, the small size and
low cost of individual sensors make these networks ideally
suited for massive and unobtrusive deployment, a most
desired prerequisite of many situation management
applications.

The recent flurry of research in sensor networks may be
credited to the DARPA-sponsored SmartDust program
whose goal was to make machines with self-powered
sensing, computing and communication capabilities so
small and inexpensive that they could be released into the
environment in massive numbers [1]. These devices are
called motes and serve as nodes in a sensor network [2,3].
As the motes are severely energy-constrained, they cannot
transmit over long distances, restricting interaction to their
immediate neighborhood.

In the past few years we have witnessed attempts at
deploying small-scale sensor networks in support of a
growing array of applications ranging from smart
kindergarten [4,5,6], to smart learning environments [7], to
habitat monitoring [8,9], to environment monitoring
[10,11,12], to greenhouse and vineyard experiments
[13,14], to forest fire detection [10,13], and to helping the
elderly and the disabled [7]. These prototypes provide
solid evidence of the usefulness of sensor networks and
suggest the future will be populated by pervasive sensor
networks that will redefine the way we live and work
[15,16]. It is expected that in the near future, in addition to
the examples above, a myriad of other applications
including battlefield command and control, disaster
management and emergency response, will involve sensor
networks as a key mission-critical component

Current sensor networks are for the most part modeled
after conventional networks under centralized control and
involve a small number of motes. It is, therefore, not clear
that they provide a credible approximation of the massive
deployment envisioned by the proponents of sensor
networks [15,17,18]. Rather than adapting conventional
techniques of centralized computer control, new
techniques dependent on local cooperation among network
nodes will lead to self-sustaining communities of machines
with emergent behavior that autonomously operate and
adapt to changes in the environment. This evolution so
parallels the development of life on Earth that living
systems are likely to provide realistic models for sensor
network design.

The main contribution of this work is to propose to look at
sensor networks in a novel way, motivated by our belief
that in order to scale to massive deployment, sensor
networks can benefit from lessons learned from the way
biological ecosystems are organized. Indeed in the
presence of a massive deployment, sensor networks must
behave as a community of organisms, where individual
motes operate asynchronously and autonomously in
parallel. We focus on fundamental characteristics of future
sensor networks that are not demonstrated by current
implementations, yet are imperative for optimal use in
situation management. More specifically, we demonstrate
that in such a model, fully distributed data aggregation and
integration can be performed in a scalable fashion in

 2 of 7

massively deployed sensor networks, where individual
motes operate based on local information, making local
decisions that are aggregated across the network to achieve
globally-meaningful effects.

It is not our claim that the examples presented here directly
apply to any problem of situation management, but rather
that the application of sensor networks to situation
management requirements may benefit from our alternate
approach. Particularly in adversarial scenarios, centralized
control of in situ networks, with its complex infrastructure
and single points of failure, may be quickly defeated. Our
decentralized approach is much more robust and fault
tolerant and would, therefore, be much more difficult to
disable.

EXAMPLE OF CURRENT SENSOR NETWORKS

An examination of current implementations reveals both
successes and limitations to the promises of sensor
networks. In 2002, a sensor network was implemented on
Great Duck Island, Maine [19]. The initial application was
to monitor the microclimates of nesting burrows, and, by
disseminating the data worldwide, to enable researchers
anywhere to non-intrusively monitor sensitive wildlife
habitats. The sensor motes were placed in the habitat and
formed a multi-hop network to pass messages back to a
base station. The data was eventually passed by satellite to
servers in Berkeley, CA, where it was distributed via the
Internet to any interested viewer. The sensors periodically
measured environmental factors and relayed the
measurements to the base station. The largest deployment
had 190 nodes up to 1000 feet from the nearest base
station.

The interested reader can examine other implementations
[18,20,21]. What was novel about these approaches is the
small size of the sensors and their wireless networking
allowing inexpensive and unobtrusive installation directly
into the environment. However, these demonstrations used
between 6 and 800 motes, thus, they do not approach the
high fidelity information architecture advertised by
proponents of sensor networks. Will the techniques used
scale to massive numbers? In these designs, behavior is
predetermined, its results collected, and otherwise
managed by a central authority.

AN ECOLOGICAL MODEL

We think of motes as organisms within a community. At
birth (i.e., at deployment time) the motes are endowed with
genetic material, containing, among others, an initial state
and rules by which they interact with the environment. The
state and the rules may change as the motes interact with
the environment, reflecting their dynamic adaptation to
conditions in their neighborhood. Additionally, the motes
may remember and record their interaction with the

environment by storing information in their limited on-
board memory. Memory and its use to change state or
rules are considered learning. Changing state conditions
based on learning demonstrates some level of cognition.

One of the goals of this work is to demonstrate how
learning and cognition can benefit the functionality of a
sensor network. In particular, we are interested in using
these attributes to enable local decisions based on local
information that effect global results. Limiting decisions to
localities is important for reasons of scalability and
autonomy. Local decisions allow distributed control. In
turn, distributed control through local decisions provides a
natural redundancy affording fault tolerance – as some
motes exhaust their energy budget and expire others will
continue to make decisions.

Although genetic algorithms are a popular algorithmic
paradigm, they rely in a crucial way on extremely fast
computational speed to evaluate many random mutations
of some genetic specification. While most of these new
combinations will prove useless, or worse, harmful to the
objective, the search is for the small percentage of
mutations that prove beneficial. Consequently, while
genetic algorithms may be useful for small-scale sensor
networks, they are useless to large-scale systems. Indeed,
the limited computational power of the motes would make
the use of genetic algorithms prohibitively expensive.
Furthermore, we view a mote as an individual organism.
Just as with living organisms, successful changes in
behavior or other capabilities must be based on experience
and learning. Random changes would be highly likely to
result in death (i.e., failure) of the mote and catastrophe for
the network. Afterwards, there would be no chance to try
another mutation.

Figure 1: Illustrating the neighborhood of a cell

We use cellular automata as a viable model for massively
deployed sensor networks operating as organisms in an
ecosystem. A cellular automaton represents, in most ways,
a distribution of sensor motes throughout a geographic
region. As illustrated in Figure 1, eight neighbor cells
surround each internal cell. Border cells have three or five
neighbors. Neighbor cells represent those motes that can
receive a transmission from a cell. Thus, the regularity of
the grid represents a logical indication of physical
proximity. Throughout this work we assume that each

Neighbor Mote

Selected Mote

Non-Neighbor
Mote

Cellular Automaton
Sensor Network

Selected Cell

Neighbor Cell

Non-Neighbor
Cell

 3 of 7

sensor has exactly eight neighbors. Visibly, the set of
neighbors need not be limited to the eight adjacent cells.
Specifying a neighbor radius greater than 1 increases the
number of cells that can receive transmissions from the
selected cell. A radius of two would include in addition to
the eight adjacent cells, the 16 cells adjacent to these
neighbors. One apparent limitation of this model is that the
number of neighbors is fixed for a given radius; however,
disabling some of the neighbors can change this.

AGGREGATING SENSED DATA

There are, essentially, two ways in which data sensed by
the motes can be aggregated. In a centrally-controlled
network, data aggregation and integration is a two-stage
process: in the first stage the motes forward the data
collected to the sink. Some of the data may be fused en
route but the final responsibility for aggregation rests
within the sink. In the second stage, the aggregated result
is broadcast back to the network. Though straightforward,
this method does not scale well [17,22]. By contrast, in a
truly distributed system, as is the case in an autonomous
sensor network, the aggregation must be performed in-situ
by the sensors themselves. To illustrate, suppose a
distributed system has capabilities to both sample the
temperature of its immediate environment and to set that
temperature. The goal is for each mote to eventually obtain
and maintain the global average by using local data only.
As the values change, the process must be repeated. While
a number of solutions to the aggregation problem have
been proposed in the literature [7,17,22,23,24,25,26], they
were either designed for sensor networks of small size or
have a centralized flavor. One of the key contributions of
this work is to show that fully distributed data aggregation
can be performed in massively deployed sensor networks.

In the following, we first examine the issues of using a
centralized approach for data aggregation in average
calculation, and then propose our autonomous and
distributed approach. As our cellular automaton is defined
such that each cell can only transmit to its immediate
neighbor, then in the centralized approach, data collected
by the sink from each cell must pass through half the span
of the grid on average. It is possible to minimize the
number of transactions by aggregating values as they are
routed to the sink, but this requires substantial
infrastructure and coordination. In the second stage
(broadcasting aggregated result), to conserve mote energy,
a suggested approach is for the sink to broadcast a return
message to all motes. But this method does not scale well
as the power of the sink’s transmission would have to
grow with the size of the sensor network distribution and
the transmission from the sink must be directly receivable
by all motes (i.e., there can be no blockage). We assume a
cost of flooding the computed average to all cells, which

increases with the size of the grid. Besides transmission
costs, there are additional problems with the centralized
approach. Routing tables to reach the sink must be
discovered and maintained. Disruption in these routes must
be handled to assure messages arrive at the sink.
Regardless of how this is done, this method is open to
single points of failure.

Recently, it was noticed by Wadaa et al. [27] as well as by
other workers that centrally-controlled sensor networks are
prone to uneven energy depletion leading to the creation of
energy holes in the vicinity of sinks. Specifically, [27]
showed that by the time the motes close to the sink have
expended all their energy, other motes in the sensor
network still have about 80-90% of their original energy
budget. This uneven energy depletion creates an energy
hole around the sink, severely curtailing network
longevity. Figure 2 illustrates the uneven energy depletion
problem, where all black cells must pass messages to the
sink through a single cell in the top row. In our cellular
automaton model, the cells closest to the sink must relay
messages from every cell in the grid and their energy
budget will decrease rapidly relative to cells further away.

Figure 2: Illustrating the energy-hole problem

Our objective is for the sensor network to function as a
community that will come to a consensus on some value
across the network without any mote or any central
authority having global knowledge of all mote values. The
problem is for each mote to obtain and maintain the global
value by iteratively using only data that is available
locally.

We now give an informal description of our model.
Assume a data value on which consensus is formed is
known by each mote and obtained by some interaction
with the environment. Each mote is assigned a time period
and a selection time for action within that time period as
genetic material. The time period is divided into one or
more slots. The selection time assigned to a mote is one of
these slots within the time period (e.g., one mote may be
selected at slot 3, another at slot 18, but all motes will be
selected at some time during a time period). Because the
selection time for each mote is determined randomly, there
is no guarantee that two or more motes will never be
selected at the same time. Upon deployment, each mote

Sink

 4 of 7

starts its own clock. If two motes are at a neighbor radius
greater than 3, they may execute the algorithm
simultaneously (i.e., be selected), as the results of their
calculations are independent of each other. If the radius is
less than 3, the result of calculations is order-dependent. In
this case, simultaneous transmissions will cause collisions,
thus a MAC layer protocol is assumed to decide cellular
execution order. To simulate this control, all motes (i.e.
cells) selected at the same time slot are executed in random
order. The order is randomized anew when they are
selected next time. Thus, the selection time is fixed at
deployment (being part of the genetic material), but the
execution order in each time slot is a “function of the
environment” and may change. Even with MAC layer
negotiations, by this method each cell is acting
asynchronously and autonomously. Because the time and
cost of reaching a global decision is a function of the
consensus value, selection time assignment, and execution
order in each time slot, we run multiple executions varying
all three parameters and average the results.

When a cell reaches its selection time within the time
period, it executes the algorithm as follows. If its status is
inactive, it does nothing. Otherwise, if its status is active, it
begins a series of transactions. A transaction is either a
request for information from a neighbor or a specification
given to a neighbor. Transactions are significant because
they require radio transmissions, typically the most costly
activity of a mote. If a mote determines no action is
required, it sets its status to inactive and will not
participate again until it is reactivated by one of its
neighbors. If a mote determines action is required, it will
perform the necessary work resulting in some change to
itself and/or its neighbors. During this process, if any
neighbor is inactive, it may be reactivated as determined
by the selected mote. The simulation continues until all
cells are set to inactive. Thus, the simulation ends using
only local information; no global control is required. As
these local neighbor cells act autonomously and
asynchronously yet cooperate with each other, act only on
local environmental information, and remember
information from one action that will affect a future action,
we argue that this system demonstrates simple cognition.

COMPUTING THE GLOBAL AVERAGE

In the following, we use our CA to simulate two functions:
averaging a value and determining majority rule across the
network. Figure 3 depicts an initial distribution in a
cellular automaton with a 30 x 30 grid of cells showing a
random distribution of values (for example, assume a
color) in the range of [0,255]. The objective is to calculate
an average color and set all motes to that value using only
local information to determine local actions. When each
cell is selected, it requests the color value of each of its

neighbors. If all are equal, it inactivates itself. If not, it
calculates an average for the neighborhood and sets itself
and all neighbors to that value. Figure 4 illustrates the
color change after 10 periods. Soon thereafter, the color
differences are indistinguishable to the naked eye.

The converged average for the community is always equal
to the average of the original distribution calculated prior
to starting the algorithm. An interesting and valuable
attribute of this algorithm is that the average color
following each cell selection is also equal to the initial
calculated average. Re-examining the process reveals the
reasons for this state of affairs. A group of nine cells of
different colors contributes to the average of the total grid.
When these cells are averaged and set to the same average
value for the group, they contribute exactly the same to the
average of the entire grid as they did with differing values.

Figure 3: Initial distribution
of colors for color averaging

Figure 4: Distribution of colors
after 10 time periods

A greater advantage of our decentralized approach is in the
distribution of energy expenditure. The “funnel effect” of
multi-hop routing required for the centralized approach
described above will deplete the energy of cells much
faster when their distance to the sink is shorter. In our
decentralized approach, the workload is not only evenly
distributed, but the workload required of an individual
mote actually decreases as the grid size increases, as
shown in Figure 5.

Figure 5: Illustrating the minimum, average, and maximum number of

cell selections

As stated earlier, some applications require a close
agreement of common value, while others may tolerate a
much larger divergence. We call the latter case “good
enough computing” and show that, in such cases, a
distributed consensus on a common value range can occur
quickly with relatively few transactions. As an example, a
200 x 200 grid begins with a color distribution depicted in
Figure 6. All 256 colors are represented in a fairly even

Total Cells Vs. Selections per Cell

0
200
400
600
800

1000
1200
1400
1600

0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05

Total Cells

Se
le

ct
io

ns
 p

er
 C

el
l

Maximum
Average
Minimum

 5 of 7

distribution with a standard deviation of 73.74, 49.6% of
colors above the average plus a tolerance of 0.5, and
49.95% of colors below the average minus this tolerance.

Figure 6: Initial distributions of colors

However, as shown by the visual display of the simulation,
the algorithm comes close to the solution very quickly.
The simulation takes 271 time steps to come to a solution
where all cells are within the specified tolerance. By the
86th time step, there are only 3 colors represented. The
standard deviation is within the tolerance of 0.5. No color
is more than 0.56 above the average plus the tolerance and
no color is more than 0.42 below the average minus the
tolerance.

Figure 7: Percentage of cells within tolerance

Figure 7 shows that, like the total transactions required for
a solution, solutions with a large percentage of cells within
the tolerance also asymptotically slope towards zero as the
grid size increases. Most importantly, solutions up to 95%
within the tolerated average reach that asymptote quickly
with few transactions regardless of grid size.

EFFECTING THE MAJORITY RULE

Often there is a requirement for members of a community
to reach consensus on a binary choice (e.g., on or off). In
our algorithm, a selected cell determines the major
frequency of its neighborhood and sets all in the
neighborhood to that value. Figure 8 depicts an initial
distribution in a cellular automaton with a 30 x 30 grid of
cells showing a random distribution of binary values,
represented by the colors black and white. Figure 9 shows
the color change at the end of four iterations. Soon
thereafter, all cells are the same color indicating the major
frequency is determined. For larger grids, interesting
patterns display, as groups of colors appear to move

around the grid while cells on group boundaries compete
for majority value.

Figure 10 shows that the time required for consensus
escalates quickly for smaller grid sizes but after 300x300,
the acceleration slows and then stabilizes for massive grid
sizes. Figure 11 confirms that the same is true for the
required number of transactions, an indicator of energy
expenditure.

As with our approach to averaging, the workload is not
only evenly distributed, but the workload required of an
individual mote actually decreases as the grid size
increases, similar to that shown in shown in Figure 5. Each
time a cell is selected, it initiates transactions resulting in
energy expense. Thus, the fewer the selections, the smaller
the energy consumed. As in Figure 5, the cost in energy
does not escalate for larger grids.

Figure 8: Initial distribution

of colors for majority rule
Figure 9: Distribution of colors

after 4 time periods

Figure 10: Time required for

majority rule
Figure 11: Transactions
required for majority rule

In some cases, it may be sufficient for most motes to be set
to the majority value. As depicted in Figures 8 and 9, this
algorithm has a similar property to averaging, as more
cells change to the majority value very rapidly. Figure 12
shows that about 70% of the cells have the majority value
with very few time steps and, furthermore, this time
requirement stabilizes for larger grid sizes. Figure 13
shows that the number of transactions continues to
increase for a final solution, but the cost of 70% stabilizes
for larger grid sizes. This again is a case of “good enough
computing”, and where applicable, it can substantially
reduce the cost in time and energy of the calculation.

If carried to completion, this algorithm will always result
in the community agreeing on a single switch value.
However it suffers from the same problems described by

Total Cells Within Tolerance Vs. Transactions

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

8.E+09

0.E+00 1.E+05 2.E+05 3.E+05 4.E+05

Total Cells

Tr
an

sa
ct

io
ns 99% within tolerance

95% within tolerance
68% within tolerance
99% within tolerance*2
95% within tolerance*2
68% within tolerance*2

Total Cells Vs. Time Steps

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

0.0E+00 7.0E+04 1.4E+05 2.1E+05 2.8E+05

Total Cells

Ti
m

e
St

ep
s

Total Cells Vs. Transactions

0.E+00

2.E+09

4.E+09

6.E+09

8.E+09

1.E+10

1.E+10

1.E+10

2.E+10

0.0E+00 7.0E+04 1.4E+05 2.1E+05 2.8E+05

Total Cells

Tr
an

sa
ct

io
ns

Color Vs. Number of Cells for 300X300 Grid

0

50

100

150

200

250
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Color

N
um

be
r o

f C
el

ls

 6 of 7

Mitchell, et al. and Epstein [29,30]. In some cases,
particularly when there are large blocks within the initial
distribution of the same color and especially if the
distribution is close to equal, the final configuration may
have a color opposite from the initial majority color. This
is possible if initially some cells with the majority color
are mistakenly turned to the minority color because its
neighborhood has predominantly minority colored cells.
This will incorrectly flip-flop the percentage of majority
and minority color cells.

Figure 12: The stabilizing time requirement for percentage of cells with

majority value

Figure 13: The stabilizing transaction requirement for percentage of

cells with majority value

We solve this problem by using averaging to incrementally
calculate the majority frequency. Instead of keeping an
integer value for the switch, we maintain a real value. All
cells are initially assigned genetic material for the switch
value of 0.0 or 1.0. The algorithm proceeds as before, but
now, instead of the selected cell calculating a binary
frequency for the neighborhood, it calculates the average
of all neighbors and itself. This real value is stored as the
switch value. Whenever the binary value of the switch is
required this value is assessed as (Value > =0.5) = 1.0 or
(Value < 0.5)=0.0.

This works because of the property described for
averaging. If the initial distribution has a majority of 1s,
then the initial average will be greater than or equal to 0.5
and if the majority is of 0s, the initial average will less
than 0.5. Because the average remains constant throughout
the process, the majority at the end will be the same as the
majority at the beginning.

The major frequency calculation shares many of the same
properties as the averaging technique described above. The

requirement for cell selections to calculate the majority
rule is similar to that shown in Figure 5 for averaging.
Again, the energy requirement per cell stabilizes for larger
grids.

CONCLUDING REMARKS

We see the full potential of sensor networks only reached
when there are massive numbers of heterogeneous motes
acting asynchronously and autonomously, yet cooperating
in a way that their local actions, based on local
information, combine to affect a functional and sustainable
network interacting with the environment. This is how
living systems have evolved so successfully. Individual
organisms operate by a combination of innate rules (i.e.
genetics) and learned behavior in a local niche. The
combination of the actions of the individual organisms
results in a multifunctional, sustainable ecosystem.

In this work we have demonstrated a function completed
by a sensor network working as a community: autonomous
motes functioning asynchronously cooperative to achieve a
common goal. The function is carried out without
centralized control and without any mote needing to know
all information known within the community. We have
also shown that the goal can be closely approached with
few costs in time and resources compared with the much
more costly final answer

The ever-increasing technology curve is going to continue
to escalate the capabilities available for situation
management. It is untenable that these tools can be timely
managed and analyzed under centralized control. Methods
such as we have described here will be necessary for the
large systems to operate as a community where many
functions can be facilitated by autonomous, asynchronous
sub systems.

References

[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next

century challenges: Mobile support for Smart Dust”,
Proc. ACM MOBICOM, pp. 271-278, Seattle, WA,
August 1999.

[2] B. Warneke, M. Last, B. Leibowitz and K. Pister,
“SmartDust: communicating with a cubic-millimeter
computer”, IEEE Computer, 34(1), pp. 44-55, 2001.

[3] V. V. Zhirnov and D. J. C. Herr, “New frontiers: self-
assembly and nano-electronics”, IEEE Computer,
34(1), pp. .34-43, 2001.

[4] S. Park, I. Locher, A. Savvides, M. B. Srivastava, A.
Chen, R. Muntz and S. Yue, “Design of a wearable
sensor badge for smart kindergarten”, Proc. 6th
International Symposium on Wearable Computers,
Seattle, WA, October, 2002.

Total Cells With Majority Value Vs. Time Steps

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

0.E+00 1.E+05 2.E+05 3.E+05

Total Cells

Ti
m

e
St

ep
s

99% with majority value

95% with majority value

68% with majority value

Total Cells With Majority Value Vs. Transactions

-2.E+09

0.E+00

2.E+09

4.E+09

6.E+09

8.E+09

1.E+10

1.E+10

1.E+10

0.E+00 1.E+05 2.E+05

Total Cells

Tr
an

sa
ct

io
ns 99% with majority value

95% with majority value

68% with majority value

 7 of 7

[5] K. Ryokai and J. Cassell, StoryMat: “A play space for
collaborative storytelling”, Proc. CHI’99, October
1999.

[6] M. Srivastava, R. Muntz and M. Potkonjak, “Smart
Kindergarten: Sensor-based wireless networks for
smart developmental problem-solving environments”,
Proc. ACM MOBICOM, Rome, Italy, July 2001.

[7] D. Estrin, R. Govindan, J. Heidemann and S. Kumar,
“Next century challenges: Scalable coordination in
sensor networks”, Proc. MOBICOM, Seattle, WA,
August 1999.

[8] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler and
J. Anderson, “Analysis of wireless sensor networks for
habitat monitoring”, in Wireless Sensor Networks,
Raghavendra, Sivalingam, and Znati, Eds., Kluwer
Academic, 2004, pp. 399-423.

[9] R. Szewczyk, J. Polastre, A. Mainwaring, J. Anderson
and D. Culler, “An analysis of a large scale habitat
monitoring application”, Proc. 2nd ACM Conference
on Embedded Networked Sensor Systems, Nov. 2004.

[10] D. M. Doolin and N. Sitar, “Wireless sensors for wild
re monitoring”, Proc. SPIE Symposium on Smart
Structures & Materials (NDE 2005), San Diego,
California, March 6-10, 2005.

[11] D. Estrin, D. Culler, K. Pister and G. Sukhatme,
“Instrumenting the physical world with pervasive
networks”, Pervasive Computing, 1(1), pp. 59-69,
2002,.

[12] K. Martinez, J. K. Hart and R. Ong, “Environmental
sensor networks”, IEEE Computer, 37(8), pp. 50-56,
2004.

[13] D. M. Doolin, S. D. Glaser and N. Sitar. “Software
Architecture for GPS-enabled Wildfire Sensorboard”,
TinyOS Technology Exchange, University of
California, Berkeley CA, February 26, 2004.

[14] Intel Research, “New Computing Frontiers – the
Wireless Vineyard”,
http://www.intel.com/technology/techresearch/researc
h/rs01031.htm, accessed April 17, 2005.

[15] K. A. Delin and S. P. Jackson, “The sensor web: a new
instrument concept”, Proc. SPIE Symposium on
Integrated Optics, San Jose, California, January 2001.

[16] P. Saffo, “Sensors, the next wave of innovation”,
Communications of the ACM, 40(2), pp. 93-97, 1997.

[17] I. F. Akyildiz, W. Su, Y. Sankarasubramanian, and E.
Cayirci, “Wireless sensor networks: A survey”,
Computer Networks, 38(4), pp. 393-422, 2002.

[18] D. Lammers, “Embedded projects take a share of
Intel's research dollars”, EE Times, August 28, 2001.
Retrieved April 5, 2004, from
http://today.cs.berkeley.edu/800demo/eetimes.html

[19] Mainwaring, A., Polastre, J., Szewczyk, R., & Culler,
D., “Wireless Sensor Networks for Habitat
Monitoring”, Intel Research, IRB-TR-02-006, June 10,

2002, 2002 ACM International Workshop on Wireless
Sensor Networks and Applications. Retrieved April 5,
2004, from http://www.greatduckisland.net

[20] UCB/MLB 29 Palms UAV-Dropped Sensor Network
Demo, 2001, University of California, Berkeley.
Retrieved April 5, 2004, from
http://robotics.eecs.berkeley.edu/~pister/29Palms0103

[21] Chen, M., Majidi, C., Doolin, D., Glaser, S., & Sitar,
N., “Design and construction of a wildfire
instrumentation system using networked sensors”,
Network Embedded Systems Technology (NEST)
Retreat, Oakland California. Retrieved April 5, 2004,
from http://firebug.sourceforge.net

[22] D. Culler, D. Estrin and M. Srivastava, “Overview of
sensor networks”, IEEE Computer, 37(8), pp. 41-49,
2004.

[23] I. Chatzigiannakis and S. Nikoletseas, “A sleep-awake
protocol for information propagation in smart dust
networks”, Proc. IEEE International Parallel and
Distributed Processing Symposium, (IPDPS’03), Nice,
France, April 2003.

[24] S. Olariu and Q. Xu, “A simple self-organization
protocol for massively deployed sensor networks”,
Computer Communications, to appear, 2005.

[25] K. Sohrabi, J. Gao, V. Ailawadhi and G. Pottie,
“Protocols for self-organization of a wireless sensor
network”, IEEE Personal Communications, 7(5), pp.
16-27, 2000.

[26] K. Sohrabi, W. Merrill, J. Elson, L. Girod, F. Newberg
and W. Kaiser, “Methods for scalable self-assembly of
ad hoc wireless sensor networks”, IEEE Transactions
on Mobile Computing, 3(4), pp. 317-331, 2004.

[27] A.Wadaa, S. Olariu, L. Wilson, M. Eltoweissy and K.
Jones, “Training a wireless sensor network”, Mobile
Networks and Applications, 10, pp. 151-167, 2005.

[28] S. Olariu, A. Wadaa, L. Wilson and M. Eltoweissy,
“Wireless sensor networks: leveraging the virtual
infrastructure”, IEEE Network, 18(4), pp. 51-56, 2004.

[29] M. Mitchel, J. Crutchfield, and R. Das, “G1.15:
Computer Science Application: Evolving Cellular
Automata to Perform Computations”, in Bäck, T.,
Fogel, D., and Michaelewics, Z. (Eds.), Handbook of
Evolutionary Computation. Oxford University Press,
1997.

[30] J. Epstein, “Learning To Be Thoughtless: Social
Norms And Individual Computation”, Center on
Social and Economic Dynamics Working Paper No. 6,
revised January 2000. Forthcoming in Computational
Economics.

