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ABSTRACT 

Promises of ubiquitous control of the physical environment 
by massively-deployed wireless sensor networks open 
avenues for new applications in support of situation 
management. Recent sensor network research has 
concentrated on developing techniques for performing 
relatively simple tasks with minimal energy expense, 
assuming some form of centralized control. Unfortunately, 
centralized control is not conducive to situation 
management as it allows single points of failure and does 
not scale to massive size networks. We propose a new way 
of looking at massively-deployed sensor networks, 
motivated by lessons learned from the way biological 
ecosystems are organized. We demonstrate that in our 
model fully distributed data aggregation and integration 
can be performed in a scalable fashion where individual 
motes operate based on local information, making local 
decisions that are aggregated across the network to 
achieve globally-meaningful effects. This exemplifies the 
robust, fault-tolerant infrastructure required for successful 
situation management systems. 

INTRODUCTION 

Optimal situation management requires intelligent 
decisions based on fresh and timely information. 
Furthermore, many applications require high fidelity 
information that can only be acquired in situ. No new 
technology shows more promise for meeting these 
demands than sensor networks. Indeed, the small size and 
low cost of individual sensors make these networks ideally 
suited for massive and unobtrusive deployment, a most 
desired prerequisite of many situation management 
applications. 

The recent flurry of research in sensor networks may be 
credited to the DARPA-sponsored SmartDust program 
whose goal was to make machines with self-powered 
sensing, computing and communication capabilities so 
small and inexpensive that they could be released into the 
environment in massive numbers [1]. These devices are 
called motes and serve as nodes in a sensor network [2,3]. 
As the motes are severely energy-constrained, they cannot 
transmit over long distances, restricting interaction to their 
immediate neighborhood.  

In the past few years we have witnessed attempts at 
deploying small-scale sensor networks in support of a 
growing array of applications ranging from smart 
kindergarten [4,5,6], to smart learning environments [7], to 
habitat monitoring [8,9], to environment monitoring 
[10,11,12], to greenhouse and vineyard experiments 
[13,14], to forest fire detection [10,13], and to helping the 
elderly and the disabled [7]. These prototypes provide 
solid evidence of the usefulness of sensor networks and 
suggest the future will be populated by pervasive sensor 
networks that will redefine the way we live and work 
[15,16]. It is expected that in the near future, in addition to 
the examples above, a myriad of other applications 
including battlefield command and control, disaster 
management and emergency response, will involve sensor 
networks as a key mission-critical component 

Current sensor networks are for the most part modeled 
after conventional networks under centralized control and 
involve a small number of motes. It is, therefore, not clear 
that they provide a credible approximation of the massive 
deployment envisioned by the proponents of sensor 
networks [15,17,18]. Rather than adapting conventional 
techniques of centralized computer control, new 
techniques dependent on local cooperation among network 
nodes will lead to self-sustaining communities of machines 
with emergent behavior that autonomously operate and 
adapt to changes in the environment. This evolution so 
parallels the development of life on Earth that living 
systems are likely to provide realistic models for sensor 
network design. 

The main contribution of this work is to propose to look at 
sensor networks in a novel way, motivated by our belief 
that in order to scale to massive deployment, sensor 
networks can benefit from lessons learned from the way 
biological ecosystems are organized. Indeed in the 
presence of a massive deployment, sensor networks must 
behave as a community of organisms, where individual 
motes operate asynchronously and autonomously in 
parallel. We focus on fundamental characteristics of future 
sensor networks that are not demonstrated by current 
implementations, yet are imperative for optimal use in 
situation management. More specifically, we demonstrate 
that in such a model, fully distributed data aggregation and 
integration can be performed in a scalable fashion in 
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massively deployed sensor networks, where individual 
motes operate based on local information, making local 
decisions that are aggregated across the network to achieve 
globally-meaningful effects. 

It is not our claim that the examples presented here directly 
apply to any problem of situation management, but rather 
that the application of sensor networks to situation 
management requirements may benefit from our alternate 
approach. Particularly in adversarial scenarios, centralized 
control of in situ networks, with its complex infrastructure 
and single points of failure, may be quickly defeated. Our 
decentralized approach is much more robust and fault 
tolerant and would, therefore, be much more difficult to 
disable. 

EXAMPLE OF CURRENT SENSOR NETWORKS 

An examination of current implementations reveals both 
successes and limitations to the promises of sensor 
networks. In 2002, a sensor network was implemented on 
Great Duck Island, Maine [19]. The initial application was 
to monitor the microclimates of nesting burrows, and, by 
disseminating the data worldwide, to enable researchers 
anywhere to non-intrusively monitor sensitive wildlife 
habitats. The sensor motes were placed in the habitat and 
formed a multi-hop network to pass messages back to a 
base station. The data was eventually passed by satellite to 
servers in Berkeley, CA, where it was distributed via the 
Internet to any interested viewer. The sensors periodically 
measured environmental factors and relayed the 
measurements to the base station. The largest deployment 
had 190 nodes up to 1000 feet from the nearest base 
station. 

The interested reader can examine other implementations 
[18,20,21]. What was novel about these approaches is the 
small size of the sensors and their wireless networking 
allowing inexpensive and unobtrusive installation directly 
into the environment. However, these demonstrations used 
between 6 and 800 motes, thus, they do not approach the 
high fidelity information architecture advertised by 
proponents of sensor networks. Will the techniques used 
scale to massive numbers? In these designs, behavior is 
predetermined, its results collected, and otherwise 
managed by a central authority. 

AN ECOLOGICAL MODEL  

We think of motes as organisms within a community. At 
birth (i.e., at deployment time) the motes are endowed with 
genetic material, containing, among others, an initial state 
and rules by which they interact with the environment. The 
state and the rules may change as the motes interact with 
the environment, reflecting their dynamic adaptation to 
conditions in their neighborhood. Additionally, the motes 
may remember and record their interaction with the 

environment by storing information in their limited on-
board memory. Memory and its use to change state or 
rules are considered learning. Changing state conditions 
based on learning demonstrates some level of cognition.  

One of the goals of this work is to demonstrate how 
learning and cognition can benefit the functionality of a 
sensor network. In particular, we are interested in using 
these attributes to enable local decisions based on local 
information that effect global results. Limiting decisions to 
localities is important for reasons of scalability and 
autonomy. Local decisions allow distributed control. In 
turn, distributed control through local decisions provides a 
natural redundancy affording fault tolerance – as some 
motes exhaust their energy budget and expire others will 
continue to make decisions. 

Although genetic algorithms are a popular algorithmic 
paradigm, they rely in a crucial way on extremely fast 
computational speed to evaluate many random mutations 
of some genetic specification. While most of these new 
combinations will prove useless, or worse, harmful to the 
objective, the search is for the small percentage of 
mutations that prove beneficial. Consequently, while 
genetic algorithms may be useful for small-scale sensor 
networks, they are useless to large-scale systems. Indeed, 
the limited computational power of the motes would make 
the use of genetic algorithms prohibitively expensive. 
Furthermore, we view a mote as an individual organism. 
Just as with living organisms, successful changes in 
behavior or other capabilities must be based on experience 
and learning. Random changes would be highly likely to 
result in death (i.e., failure) of the mote and catastrophe for 
the network. Afterwards, there would be no chance to try 
another mutation. 

 

 

 

 

 
Figure 1: Illustrating the neighborhood of a cell 

 
We use cellular automata as a viable model for massively 
deployed sensor networks operating as organisms in an 
ecosystem. A cellular automaton represents, in most ways, 
a distribution of sensor motes throughout a geographic 
region. As illustrated in Figure 1, eight neighbor cells 
surround each internal cell. Border cells have three or five 
neighbors. Neighbor cells represent those motes that can 
receive a transmission from a cell. Thus, the regularity of 
the grid represents a logical indication of physical 
proximity.  Throughout this work we assume that each 
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sensor has exactly eight neighbors. Visibly, the set of 
neighbors need not be limited to the eight adjacent cells. 
Specifying a neighbor radius greater than 1 increases the 
number of cells that can receive transmissions from the 
selected cell. A radius of two would include in addition to 
the eight adjacent cells, the 16 cells adjacent to these 
neighbors. One apparent limitation of this model is that the 
number of neighbors is fixed for a given radius; however, 
disabling some of the neighbors can change this. 

AGGREGATING SENSED DATA 

There are, essentially, two ways in which data sensed by 
the motes can be aggregated. In a centrally-controlled 
network, data aggregation and integration is a two-stage 
process: in the first stage the motes forward the data 
collected to the sink. Some of the data may be fused en 
route but the final responsibility for aggregation rests 
within the sink. In the second stage, the aggregated result 
is broadcast back to the network. Though straightforward, 
this method does not scale well [17,22]. By contrast, in a 
truly distributed system, as is the case in an autonomous 
sensor network, the aggregation must be performed in-situ 
by the sensors themselves. To illustrate, suppose a 
distributed system has capabilities to both sample the 
temperature of its immediate environment and to set that 
temperature. The goal is for each mote to eventually obtain 
and maintain the global average by using local data only. 
As the values change, the process must be repeated. While 
a number of solutions to the aggregation problem have 
been proposed in the literature [7,17,22,23,24,25,26], they 
were either designed for sensor networks of small size or 
have a centralized flavor. One of the key contributions of 
this work is to show that fully distributed data aggregation 
can be performed in massively deployed sensor networks. 

In the following, we first examine the issues of using a 
centralized approach for data aggregation in average 
calculation, and then propose our autonomous and 
distributed approach. As our cellular automaton is defined 
such that each cell can only transmit to its immediate 
neighbor, then in the centralized approach, data collected 
by the sink from each cell must pass through half the span 
of the grid on average. It is possible to minimize the 
number of transactions by aggregating values as they are 
routed to the sink, but this requires substantial 
infrastructure and coordination. In the second stage 
(broadcasting aggregated result), to conserve mote energy, 
a suggested approach is for the sink to broadcast a return 
message to all motes. But this method does not scale well 
as the power of the sink’s transmission would have to 
grow with the size of the sensor network distribution and 
the transmission from the sink must be directly receivable 
by all motes (i.e., there can be no blockage). We assume a 
cost of flooding the computed average to all cells, which 

increases with the size of the grid. Besides transmission 
costs, there are additional problems with the centralized 
approach. Routing tables to reach the sink must be 
discovered and maintained. Disruption in these routes must 
be handled to assure messages arrive at the sink. 
Regardless of how this is done, this method is open to 
single points of failure. 

Recently, it was noticed by Wadaa et al. [27] as well as by 
other workers that centrally-controlled sensor networks are 
prone to uneven energy depletion leading to the creation of 
energy holes in the vicinity of sinks. Specifically, [27] 
showed that by the time the motes close to the sink have 
expended all their energy, other motes in the sensor 
network still have about 80-90% of their original energy 
budget. This uneven energy depletion creates an energy 
hole around the sink, severely curtailing network 
longevity. Figure 2 illustrates the uneven energy depletion 
problem, where all black cells must pass messages to the 
sink through a single cell in the top row. In our cellular 
automaton model, the cells closest to the sink must relay 
messages from every cell in the grid and their energy 
budget will decrease rapidly relative to cells further away. 
 

 

 

 

 

 
Figure 2: Illustrating the energy-hole problem 

Our objective is for the sensor network to function as a 
community that will come to a consensus on some value 
across the network without any mote or any central 
authority having global knowledge of all mote values. The 
problem is for each mote to obtain and maintain the global 
value by iteratively using only data that is available 
locally. 

We now give an informal description of our model. 
Assume a data value on which consensus is formed is 
known by each mote and obtained by some interaction 
with the environment. Each mote is assigned a time period 
and a selection time for action within that time period as 
genetic material. The time period is divided into one or 
more slots. The selection time assigned to a mote is one of 
these slots within the time period (e.g., one mote may be 
selected at slot 3, another at slot 18, but all motes will be 
selected at some time during a time period). Because the 
selection time for each mote is determined randomly, there 
is no guarantee that two or more motes will never be 
selected at the same time. Upon deployment, each mote 

Sink 
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starts its own clock. If two motes are at a neighbor radius 
greater than 3, they may execute the algorithm 
simultaneously (i.e., be selected), as the results of their 
calculations are independent of each other. If the radius is 
less than 3, the result of calculations is order-dependent. In 
this case, simultaneous transmissions will cause collisions, 
thus a MAC layer protocol is assumed to decide cellular 
execution order. To simulate this control, all motes (i.e. 
cells) selected at the same time slot are executed in random 
order. The order is randomized anew when they are 
selected next time. Thus, the selection time is fixed at 
deployment (being part of the genetic material), but the 
execution order in each time slot is a “function of the 
environment” and may change. Even with MAC layer 
negotiations, by this method each cell is acting 
asynchronously and autonomously. Because the time and 
cost of reaching a global decision is a function of the 
consensus value, selection time assignment, and execution 
order in each time slot, we run multiple executions varying 
all three parameters and average the results. 

When a cell reaches its selection time within the time 
period, it executes the algorithm as follows. If its status is 
inactive, it does nothing. Otherwise, if its status is active, it 
begins a series of transactions. A transaction is either a 
request for information from a neighbor or a specification 
given to a neighbor. Transactions are significant because 
they require radio transmissions, typically the most costly 
activity of a mote. If a mote determines no action is 
required, it sets its status to inactive and will not 
participate again until it is reactivated by one of its 
neighbors. If a mote determines action is required, it will 
perform the necessary work resulting in some change to 
itself and/or its neighbors. During this process, if any 
neighbor is inactive, it may be reactivated as determined 
by the selected mote. The simulation continues until all 
cells are set to inactive. Thus, the simulation ends using 
only local information; no global control is required. As 
these local neighbor cells act autonomously and 
asynchronously yet cooperate with each other, act only on 
local environmental information, and remember 
information from one action that will affect a future action, 
we argue that this system demonstrates simple cognition. 

COMPUTING THE GLOBAL AVERAGE  

In the following, we use our CA to simulate two functions: 
averaging a value and determining majority rule across the 
network. Figure 3 depicts an initial distribution in a 
cellular automaton with a 30 x 30 grid of cells showing a 
random distribution of values (for example, assume a 
color) in the range of [0,255]. The objective is to calculate 
an average color and set all motes to that value using only 
local information to determine local actions. When each 
cell is selected, it requests the color value of each of its 

neighbors. If all are equal, it inactivates itself. If not, it 
calculates an average for the neighborhood and sets itself 
and all neighbors to that value. Figure 4 illustrates the 
color change after 10 periods. Soon thereafter, the color 
differences are indistinguishable to the naked eye. 

The converged average for the community is always equal 
to the average of the original distribution calculated prior 
to starting the algorithm.  An interesting and valuable 
attribute of this algorithm is that the average color 
following each cell selection is also equal to the initial 
calculated average. Re-examining the process reveals the 
reasons for this state of affairs. A group of nine cells of 
different colors contributes to the average of the total grid. 
When these cells are averaged and set to the same average 
value for the group, they contribute exactly the same to the 
average of the entire grid as they did with differing values. 

 

 

 

 

 
 

Figure 3: Initial distribution 
of colors for color averaging 

Figure 4:  Distribution of colors 
after 10 time periods 

A greater advantage of our decentralized approach is in the 
distribution of energy expenditure. The “funnel effect” of 
multi-hop routing required for the centralized approach 
described above will deplete the energy of cells much 
faster when their distance to the sink is shorter. In our 
decentralized approach, the workload is not only evenly 
distributed, but the workload required of an individual 
mote actually decreases as the grid size increases, as 
shown in Figure 5. 

 

 

 

 

 
Figure 5: Illustrating the minimum, average, and maximum number of 

cell selections 
 

As stated earlier, some applications require a close 
agreement of common value, while others may tolerate a 
much larger divergence. We call the latter case “good 
enough computing” and show that, in such cases, a 
distributed consensus on a common value range can occur 
quickly with relatively few transactions. As an example, a 
200 x 200 grid begins with a color distribution depicted in 
Figure 6. All 256 colors are represented in a fairly even 
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distribution with a standard deviation of 73.74, 49.6% of 
colors above the average plus a tolerance of 0.5, and 
49.95% of colors below the average minus this tolerance. 

 

 

 

 

 

 
Figure 6: Initial distributions of colors 

 
However, as shown by the visual display of the simulation, 
the algorithm comes close to the solution very quickly. 
The simulation takes 271 time steps to come to a solution 
where all cells are within the specified tolerance. By the 
86th time step, there are only 3 colors represented. The 
standard deviation is within the tolerance of 0.5. No color 
is more than 0.56 above the average plus the tolerance and 
no color is more than 0.42 below the average minus the 
tolerance. 

 

 

 

 

 
Figure 7: Percentage of cells within tolerance 

 
Figure 7 shows that, like the total transactions required for 
a solution, solutions with a large percentage of cells within 
the tolerance also asymptotically slope towards zero as the 
grid size increases. Most importantly, solutions up to 95% 
within the tolerated average reach that asymptote quickly 
with few transactions regardless of grid size. 

EFFECTING THE MAJORITY RULE  

Often there is a requirement for members of a community 
to reach consensus on a binary choice (e.g., on or off). In 
our algorithm, a selected cell determines the major 
frequency of its neighborhood and sets all in the 
neighborhood to that value. Figure 8 depicts an initial 
distribution in a cellular automaton with a 30 x 30 grid of 
cells showing a random distribution of binary values, 
represented by the colors black and white. Figure 9 shows 
the color change at the end of four iterations. Soon 
thereafter, all cells are the same color indicating the major 
frequency is determined. For larger grids, interesting 
patterns display, as groups of colors appear to move 

around the grid while cells on group boundaries compete 
for majority value. 

Figure 10 shows that the time required for consensus 
escalates quickly for smaller grid sizes but after 300x300, 
the acceleration slows and then stabilizes for massive grid 
sizes. Figure 11 confirms that the same is true for the 
required number of transactions, an indicator of energy 
expenditure. 

As with our approach to averaging, the workload is not 
only evenly distributed, but the workload required of an 
individual mote actually decreases as the grid size 
increases, similar to that shown in shown in Figure 5. Each 
time a cell is selected, it initiates transactions resulting in 
energy expense. Thus, the fewer the selections, the smaller 
the energy consumed. As in Figure 5, the cost in energy 
does not escalate for larger grids. 

 

 

 

 

 

 
Figure 8: Initial distribution 

of colors for majority rule 
Figure 9:  Distribution of colors 

after 4 time periods 
 

 

 

 

 
Figure 10: Time required for 

majority rule 
Figure 11: Transactions 
required for majority rule 

 
In some cases, it may be sufficient for most motes to be set 
to the majority value. As depicted in Figures 8 and 9, this 
algorithm has a similar property to averaging, as more 
cells change to the majority value very rapidly. Figure 12 
shows that about 70% of the cells have the majority value 
with very few time steps and, furthermore, this time 
requirement stabilizes for larger grid sizes. Figure 13 
shows that the number of transactions continues to 
increase for a final solution, but the cost of 70% stabilizes 
for larger grid sizes. This again is a case of “good enough 
computing”, and where applicable, it can substantially 
reduce the cost in time and energy of the calculation. 

If carried to completion, this algorithm will always result 
in the community agreeing on a single switch value. 
However it suffers from the same problems described by 
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Mitchell, et al. and Epstein [29,30]. In some cases, 
particularly when there are large blocks within the initial 
distribution of the same color and especially if the 
distribution is close to equal, the final configuration may 
have a color opposite from the initial majority color. This 
is possible if initially some cells with the majority color 
are mistakenly turned to the minority color because its 
neighborhood has predominantly minority colored cells. 
This will incorrectly flip-flop the percentage of majority 
and minority color cells. 

 

 

 

 

 

 
Figure 12: The stabilizing time requirement for percentage of cells with 

majority value 
 

 

 

 

 

 
Figure 13: The stabilizing transaction requirement for percentage of 

cells with majority value 
 

We solve this problem by using averaging to incrementally 
calculate the majority frequency. Instead of keeping an 
integer value for the switch, we maintain a real value. All 
cells are initially assigned genetic material for the switch 
value of 0.0 or 1.0. The algorithm proceeds as before, but 
now, instead of the selected cell calculating a binary 
frequency for the neighborhood, it calculates the average 
of all neighbors and itself. This real value is stored as the 
switch value. Whenever the binary value of the switch is 
required this value is assessed as (Value > =0.5) = 1.0 or 
(Value < 0.5)=0.0. 

This works because of the property described for 
averaging. If the initial distribution has a majority of 1s, 
then the initial average will be greater than or equal to 0.5 
and if the majority is of 0s, the initial average will less 
than 0.5. Because the average remains constant throughout 
the process, the majority at the end will be the same as the 
majority at the beginning. 

The major frequency calculation shares many of the same 
properties as the averaging technique described above. The 

requirement for cell selections to calculate the majority 
rule is similar to that shown in Figure 5 for averaging. 
Again, the energy requirement per cell stabilizes for larger 
grids. 

CONCLUDING REMARKS  

We see the full potential of sensor networks only reached 
when there are massive numbers of heterogeneous motes 
acting asynchronously and autonomously, yet cooperating 
in a way that their local actions, based on local 
information, combine to affect a functional and sustainable 
network interacting with the environment. This is how 
living systems have evolved so successfully. Individual 
organisms operate by a combination of innate rules (i.e. 
genetics) and learned behavior in a local niche. The 
combination of the actions of the individual organisms 
results in a multifunctional, sustainable ecosystem. 

In this work we have demonstrated a function completed 
by a sensor network working as a community: autonomous 
motes functioning asynchronously cooperative to achieve a 
common goal. The function is carried out without 
centralized control and without any mote needing to know 
all information known within the community. We have 
also shown that the goal can be closely approached with 
few costs in time and resources compared with the much 
more costly final answer 

The ever-increasing technology curve is going to continue 
to escalate the capabilities available for situation 
management. It is untenable that these tools can be timely 
managed and analyzed under centralized control. Methods 
such as we have described here will be necessary for the 
large systems to operate as a community where many 
functions can be facilitated by autonomous, asynchronous 
sub systems. 
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