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CHAPTER 9 

CONTROL FUNCTION 

9.1. INTRODUCTION 

Models of greenhouses take various forms other than just greenhouses with single or 
double covering layers.  Modelling of greenhouses has been studied extensively 
(Takakura, 1989).  Static models are still predominant, and they are powerful for 
analyzing particular problems such as comparison of the effectiveness of various 
thermal screens and estimation of total heat requirements based on actual 
measurements. 

In order to investigate the effectiveness of reflective blinds and the Fresnel prism 
effect of coverings, light penetration models have been developed.   

Several models of total and dynamic systems have been developed.  New 
innovations such as expert systems and practical feed-forward control systems will 
be included in the models, although there are several problems to be solved such as 
determination of heat transfer coefficients and sky temperature.   

Greenhouse models consist of four sub-systems: 1) light penetration, 2) heat and 
mass transfer, 3) control function and 4) plant growth.  The models are classified as 
either static or dynamic and as either total- or sub-systems (see Fig. 9.1).  Static 
analyses using sub-systems are predominant for analyzing particular problems such 
as comparing the effectiveness of various thermal screens.  In order to estimate 
overall heat requirements based on measurements in practical greenhouses, static 
analyses using total systems have been used.  The light environment is one of the 
most important sub-systems for plant growth, and can be treated separately.  
Therefore, the light environment has been studied independently, and its models can 
be either static or dynamic.  This sub-system can be included in the total system, of 
course.   

Total and dynamic system models are defined as models that can predict inside 
environmental factors in the dynamic sense. 

The sub-model for plant growth is one of the most difficult to include in the total 
system, but it is essential.  Many primitive models have been reported.  Rather 
sophisticated plant growth models with expert systems are involved in a new area of 
study although some difficulties have been noted.   

Protected cultivation is now being investigated in two main ways.  In one, we  
looked at environmental control using films in static ways; the other involves 
dynamic mechanical systems such as heaters and coolers.  Where the outside 
climate is mild, most greenhouses are not heated.  Even in Japan, more than 65% of 
the total covered cultivation area is not heated.  In Mediterranean countries, there 
are a large number of unheated greenhouses.  On the other hand, in northern Europe, 
greenhouses with heating systems are essential. 

Several control functions are necessary for a heating system, and they must be 
considered as a unit.  For example, in most cases air temperature and humidity 
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interact with each other.  It is possible to change air temperature without changing 
absolute humidity, but relative humidity changes as a result.  A change in inside air 
temperature by ventilation changes the CO2 concentration in the greenhouse.  
Therefore, it is rather difficult to control one factor without affecting others.        
     

However, if we focus on control machines such as heaters or coolers and the 
main effect of these machines is on one environmental factor such as air temperature, 
the situation is simplified and can be a good example of actual and complicated 
control functions.  In the present chapter, the relationship between one control 
machine and one environmental factor is considered for two typical control logics; 
one is very popular and well-known feedback, and the other is feedforward. 

Figure 9.1. Greenhouse sub-models. 

9.2. SYSTEM RESPONSE 

Let us consider a simple example.  Suppose there is a container of water boiling 
and we put an egg into it; how will the egg's temperature change?  It will rise from 
the room temperature to the boiling temperature.  In fact, the temperature 
distribution varies from one part of the egg to another, and phase change occurs.  
But in the present example, it is assumed that the temperature distribution is uniform 
and there is no phase change.   

If we generalize the temperature change of the egg, input it to the control system, 
and assume the temperature surrounding the egg changes from 0 to 1, then the 
response curve of the system (egg temperature) is similar to that shown by the solid 
line in Fig. 9.2(a).  This is called the system response with first-order delay.  The 
basic equation of the system response with first-order delay to the unit step input is 
given as 

 RESP = 1 - exp( - t / DELA)  (9.1) 

This is a solution to the following differential equation: 

Light Penetration 
 
Heat and Mass Transfer
 
Control Function 
 
Plant Growth 

Greenhouse Model 
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 DELA*dy/dt + y(t) = EE(t) (9.2) 

with a constant, that is EE(t) = 1.   
If the right-hand side of the equation is in the general form, X(t), then the general 

solution to eq. 9.2 is  

 y(t) = exp( - t / DELA) / DELA * ( ∫ exp(t / DELA) * X(t) dt + C)   (9.3) 

If the heat content of the egg is large, its temperature does not rise immediately.  
A system response of this kind is called a system response with second or 
higher-order delay.  The shape of this type of response is indicated by the chain 
curve in Fig. 9.2(a).  These response curves are simplified and approximated as the 
response with first-order delay and dead time, as shown by the dotted line in Fig. 
9.2(a).  This can be interpreted as the response to a unit step change RESD(t) 
which is shown in Fig. 9.2(b).              

 
    

Figure 9.2. Response curve of the system. 

This curve is expressed by RESF(t) as 

 RESF(t) = (1.0 - exp( - (t - TAU) / DELA)) (9.4) 

and 
 RESD(t) = EE(t - TAU) (9.5) 

where t is time (min), TAU is dead time (min or hour) and DELA is delay time (min 
or hour). The function EE(t) is a unit step function which changes from 0 to 1 at 
TIME 0 and remains as 1. Therefore, the function RESD is the unit step function, 
which is delayed by TAU.   

In CSMP on mainframes, a CSMP function which is called REALPL is 
available.  This is the function used to calculate eq. 9.3.  Modelling can be 
simplified with this function, but it is not available in micro-CSMP and MATLAB. 
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9.3. PID CONTROL 

The most common type of feedback control logic is PID (Proportional, Integral and 
Differential) control.  The error (ER) is defined as the difference between a set 
point (SP) and a controlled value (CV):   

 ER = SP – CV (9.6) 

Therefore, the process variable (PV) is given as 

 PV = KK*(ER + ∫
t

o

 

 TL
1 ER * dt + TD * dER/dt) (9.7) 

where KK is a proportionality constant, TL is a time constant for integration and TD 
is a time constant for differentiation. 

9.4. TEMPERATURE CONTROL LOGIC (CUC120) 

Let's consider the air temperature control of a floor-heating greenhouse, which is 
shown in Fig. 9.3.  This system has a large heat mass in the floor, which creates a 
large time lag in the response.  The system response is given by eq. 9.3 for an 
arbitrary input and by eq. 9.4 for a unit step input.  If we use a PID controller to 
control the system, the feedback control logic is given by eqs. 9.6 and 9.7, where the 
unit for CV and KK is oC and the unit for TL and TD is hr. In CSMP, a step 
function is available; that is,  

 Y = STEP(TAU) (9.8) 

which means that Y is 0 for t less than TAU, and Y is 1 for t equal to or greater than 
TAU as shown in the following MATLAB script.   
 
    If  (t < TAU) 
 Y=0; 
   else 
       Y=1; 
   end  
 

In eq. 9.7, the derivative term can be approximated using numerical 
differentiation, i.e., difference of ER over difference of t.  The integral term can 
also be approximated using summation as shown in Fig. 9.4.  MATLAB provides a 
function for integration that will be introduced in the next program.  Normally, 
process variables (such as PV in this case) are used for control facilities such as 
heaters and coolers.  Their units are, for example, expressed by voltage and valve 
positions.  In order to simplify the problem, the unit of PV in the present case is 
assumed to be the same as that for the controlled value -- that is, temperature.  The 
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change in PV is in turn the input to the system -- that is, X(t) in eq. 9.3.  Then, 
delay is introduced by using the source code listed in the % ---[Delay] section as 
shown in Fig. 9.4.   

Figure 9.3. A floor-heating greenhouse. 

Users can enter ‘cuc120’, ‘cuc120(1)’,.., ‘cuc120(5)’ in the Command Window 
to run this program.  Typical results are shown in Figs. 9.5a, b and c.  The 
response to the unit step change of the set point from 0 to 1oC, which is shown by 
the line with plus signs, has a 3 hour delay and increases rapidly.  In Fig. 9.5a, the 
response first overshoots the set point and then reaches close to the set point in 48 
hours.  This means it takes two days to reach steady state after a unit step change.  
The line with star signs is the error curve, and it is clear that the error decreases 
rapidly with time.  This is not far from reality.  It is not difficult to imagine how 
the situation will be if the input changes periodically.  The value KK is not only the 
proportionality constant in PID control logic but also a constant to convert the 
process variable to the controlled value including the process gain.  Various shapes 
of the response can be obtained by changing the value of KK and/or TAU.  If KK 
is large, overshoot appears (see Fig. 9.5a).  Undershoot results from a smaller value 
of KK (see Fig. 9.5b).  Smaller oscillations around the set point can be expected 
after 48 hours, when TAU is larger and KK is smaller as shown in Fig. 9.5c.   

 
 

Sensor Controller

Boiler Heater

Valve 
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% Program for PID control,   cuc120.m 
function cuc120(pid) 
if nargin==0      % if number of arguments is 0,  
   pid=2;       % case 2 is the default 
end 
if pid==1       % case 1: PID control  
   Tot_hrs=3600; logic='PID';   
   kk = 0.01;tau = 120.0;  % small kk and late response (long delay) 
elseif pid==2     % case 2: PID control  
   Tot_hrs=48; logic='PID'; kk=0.1;tau=3.0;% medium kk causing overshoot  
elseif pid==3     % case 3: PID control  
   Tot_hrs=48; logic='PID'; kk=0.05;tau=3.0;% small kk causing undershoot  
elseif pid==4     % case 4: PI control 
   Tot_hrs=48; logic='PI'; kk = 0.1;tau = 3.0;  
elseif pid==5     % case 5: PD control 
   Tot_hrs=48; logic='PD'; kk = 0.1;  tau = 3.0;   
end 
tl = 0.9; td = 0.2; dela = 5.0; 
sp = ones(1, Tot_hrs+1); pv = zeros(1, Tot_hrs+1);  
cv=pv;  er=pv; 
er(1, 1) = sp(1, 1) - cv(1, 1); er(1, 2) = sp(1, 2) - cv(1, 2); 
total_er = er(1, 1) + er(1, 2); total_2 = 0; dt=1; 
for t = 2: 1: Tot_hrs; 
   switch logic 
   case 'PID'              %  PID control logic 
      pv(1, t+1)=kk*(er(1, t)+td*(er(1, t)-er(1,t-1))/dt+1.0/tl*total_er); 
   case 'PI'           % PI control 
      pv(1, t+1)=kk*(er(1, t)+1.0/tl*total_er); 
   case 'PD'           % PD control    
      pv(1, t+1)=kk*(er(1, t)+td*(er(1, t)-er(1, t-1))/dt);   
   case 'P'            % P control    
      pv(1, t+1)=kk*er(1, t) ;            
   case 'I'            % I control    
      pv(1, t+1)=kk*(1.0 / tl * total_er); 
   case 'D'            % D control 
      pv(1, t+1)=kk*(td*(er(1, t)-er(1, t-1))/dt); 
   end    
%-------[Delay]------------------------------------------------------- 
   if( t < tau ) 
      cv(1, t+1) = 0; 
   else 
      tmp = t-tau;  cv(1, t+1) = exp(-tmp/dela) / dela * total_2; 
      total_2 = total_2 + exp((tmp)/dela)*pv(1,tmp+1);  % INTGRL term 
   end 
%--------------------------------------------------------------------- 
   er(1, t+1) = sp(1, t+1) - cv(1, t+1); 
   total_er = total_er + er(1, t+1);  % INTGRL term 
end 
h1=findobj('tag','cuc120');close(h1);      
figure('tag','cuc120','Resize','on','MenuBar','none',... 
   'Name','CUC120.m (Figure 1: PID control)',... 
   'NumberTitle','off','Position',[160,80,520,420]); 
ic = 0:Tot_hrs; 
if pid == 1        
   plot(ic/24, sp(1, :), ic/24, cv(1, :),'g+-', ic/24, er(1, :),'r*-');  
   xlabel('Time elapsed, day');  axis([-inf inf -1 2]); 
elseif pid > 1 
   plot(ic, sp(1,:), ic, cv(1,:),'g+-', ic, er(1,:),'r*-');   
   xlabel('Time elapsed, hr'); axis([-inf inf -0.3 1.5]); 
   set(gca,'xtick',[0 6 12 18 24 30 36 42 48],… 



 CONTROL FUNCTION 147 
 

 
  

'ytick',[-0.2 0 0.2 0.4 0.6 0.8 1 1.2]); 
end 
tit=([logic ' control at kk=' num2str(kk) ', Tau=', num2str(tau)]); 
title(tit); ylabel('Relative Temperature, ^oC'); 
grid on; legend('Set Point','Response','Error'); 
 

Figure 9.4. Program to simulate PID control for floor-heating greenhouses (CUC120.m). 

 
Figure 9.5a. Response and error curves for unit step change (showing overshoot). 

 
Figure 9.5b. Response and error curves for unit step change (showing undershoot). 
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Figure 9.5c. Response and error curves for unit step change with long delay. 

9.5. FEEDBACK VS. FEEDFORWARD CONTROL 

9.5.1. Feedback and feedforward  

Feedback control logic is well-established in both strategy and hardware 
configuration for many process controls.  PID logic is one of the typical feedback 
control methods and is widely used.  On the other hand, feedforward control is 
usually mentioned briefly in control textbooks, but is rarely found in practical 
applications.  The main reason is that feedforward control depends on some kind of 
predictive model, even for physical systems, and works well alone in the practical 
sense.  Therefore, the best solution is the combination of feedback and feedforward 
control if the latter is necessary.   

When the system has a large time lag, as with floor heating, feedback techniques 
cannot effectively minimize the errors caused by the time lag in the system.  This 
situation requires a form of predicted action.  In feedforward control, the controller 
acquires information about potential upsets which have not yet affected the behavior 
of the process, anticipates the effect of these upsets on the process, and counteracts 
them before they are manifested on the process.  The feedforward technique offers 
a potentially better solution for a system with large heat mass. 

In the present section, it is easily shown that conventional feedback control 
applied to floor-heated greenhouses results in a large delay from the set point when 
floor heating starts and a large overshoot when heaters are turned off.  Feedforward 
control introduces a prediction scheme, which will regulate the rate of heat input 
prior to the expected time and give complete control in this case because the system 
is perfectly predictable (see Takakura, et al., 1993).  
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9.5.2. System response and its application to feedforward control  

One well-known technique for predicting the dynamic response of a linear system to 
an arbitrary change of an input function is the weighing function method.  In this 
method, the responses to all inputs are obtained by the principle of superposition.  
The theory of superimposition can be applied to any linear system. 

Using Duhamel's integral, the response R(t) to an arbitrary function F(t) using 
the weighing function W(t) is as follows: 

      R(t) = ∫
t 

 0 F(t - τ ) * W(τ ) dτ   (9.9) 

where W(t) is the derivative of a unit response. 
If the unit response to the floor water temperature is defined as Rf(t), the inside 

air temperature change Ti(t) due to floor water is expressed as 

       Ti(t) = ∫
t 

 0 Q(t –τ ) * Rf '(τ ) dτ  (9.10) 

where the superscript (') means the first derivative with respect to time.  From the 
Laplace transform of the convolution integral, and by taking the Laplace transform 
of eq. 9.10, the following equation is given; 

      Q(s) = Ti(s) / Rf '(s) (9.11) 

9.5.3. A floor-heating greenhouse with ideal conditions (CUC122) 

The present model is very simplified and hypothetical, but adequate for showing the 
difference between feedback and feedforward logics.  The unit step response of the 
inside air temperature due to the step change of floor water temperature is expressed 
by eq. 9.4 with a dead time and delay (RF(s) is equal to the Laplace transform of 
RESF(t) in eq. 9.4).  In the present model, heat transfer through the cover is 
assumed instantaneous and no response equation is needed for outside air 
temperature change.  The delay of the control system is also introduced by the 
%---[DELAY] section as listed in Fig. 9.4.  The system is well-defined and all 
responses are defined by analytical equations.    

Now, the set point of inside air temperature Ti(t) is set to   

      Ti(t) = K33 + A33 * sin(OMEGA * t) (9.12) 
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After taking the Laplace transform of eqs. 9.4 and 9.12, the results are substituted 
into eq. 9.11. The inverse Laplace transform of eq. 9.11 gives finally the set point of 
floor water temperature in order to realize the inside air temperature change defined 
by eq. 9.12. 

     Q(t) = K33 + A33 * OMEGA * DELA * cos(OMEGA * (t + TAU)) 
+ A33 * sin(OMEGA * (t + TAU)) (9.13)  

The program to compare the two control logics is shown in Fig. 9.6 and a typical 
result is indicated in Fig. 9.7.  Feedback logic only follows the error which is 
detected at the present time.  If the system delay is very large, as in the present case, 
the feedback system cannot catch up with the error in principle.  A one or two 
hours delay is common in practical large-scale greenhouses. A larger gain in a 
feedback system can give a quicker response, but it brings larger amplitude 
difference in the response curve. In the present case, the system response curve is 
defined without any error, and gives a perfect fit with the set point for feedforward 
control after a certain time lapse.  The %---[Delay] section of the source code listed 
in Fig. 9.6a provides comparison on feedback (PID) and feedforward control.  The 
approach in deriving CV is the same as in CUC120, and the approach in deriving 
CVF is more accurate.  The quad8 or quadl function is used to do the integration 
from 0 to t-TAU.  The function quad8 was replaced by quadl in MATLAB from 
version 6 (Release 12). 
 
 

% Control function for floor-heating greenhouse CUC122.m 
% Comparison of feedback (PID) and feedforward control 
function cuc122 
global TAU; global  DELA; 
KK = 0.1;  
TL = 0.9; TD = 0.5; TAU = 3.0; DELA = 5.0; % unit of time is hr 
totnum=48; totnum2=totnum+1; 
SP=zeros(1, totnum2); ER=zeros(1, totnum2);  PV=zeros(1, totnum2); 
CV=zeros(1, totnum2); CVF=zeros(1, totnum2); 
TOTAL_RESP=0;      
SP(1,1)=sin(2*pi/24*0);   SP(1,2)=sin(2*pi/24*1); 
ER(1, 1) = SP(1, 1) - CV(1, 1); ER(1, 2) = SP(1, 2) - CV(1, 2); 
TOTAL_ER = ER(1,1) + ER(1, 2); 
PV(1,2)=KK*(ER(1,1)+TD*(ER(1,1)-0)+1/TL*TOTAL_ER); 
for T = 2: 1: totnum; 
   CLOCK=mod(T,24);    SP(1,T+1)=sin(2*pi/24*CLOCK); 
   PV(1,T+1)=KK*(ER(1,T)+TD*(ER(1,T)-ER(1,T-1))+1/TL*TOTAL_ER); 
   % TOTAL_ER is the Integral term of ER 
   % PV    = KK*(ER + TD*DERIV(ICD,ER) + 1.0/TL*INTGRL(ICI,ER)) 
   % Feedback (PID) control logic 
%----[Delay]---------------------------------------------------------- 
   if T<TAU 
      CV(1, T+1) = 0;    CVF(1, T+1) = 0; 
   else 
      TMP = T-TAU;  
      CV(1, T+1) = exp(-TMP/DELA) / DELA * TOTAL_RESP; 
      TOTAL_RESP = TOTAL_RESP + exp((TMP)/DELA)*PV(1, TMP+1);  
   %  CVF(1,T+1)=exp(-TMP/DELA) / DELA * quad8('feedf',0,TMP); 
   %  quad8 is obsolete at MATLAB version 6 (R12) 

  CVF(1,T+1)=exp(-TMP/DELA) / DELA * quadl('feedf',0,TMP); 
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   % quadl is not available prior to MATLAB version 6 (R12) 
   End 
%--------------------------------------------------------------------- 
   ER(1, T+1) = SP(1, T+1) - CV(1, T+1); 
% Error (ER) is the diff. between set point (SP) and controlled value (CV) 
   TOTAL_ER = TOTAL_ER + ER(1, T+1); 
end 
h1=findobj('tag','cuc122');  close(h1);      
figure('tag','cuc122','Resize','on','MenuBar','none', 'Name',... 
   'CUC122.m (Figure 1: Feedback control vs. Feedforward control)',... 
   'NumberTitle','off','Position',[160,80,520,420]); 
ic = 0:totnum; 
plot(ic, SP(1,:),ic, CV(1,:),'k+-',ic, CVF(1,:),'r*-'); 
set(gca,'xtick',[0 6 12 18 24 30 36 42 48],'ytick',[-1 -0.5 0 0.5 1]); 
axis([-1 totnum2 -inf inf]); 
xlabel('Time elapsed, hr');  ylabel('Temperature, ^oC'); 
legend('Set Point','Feedback','Feedforward');  grid on; 
 

Figure 9.6a. A model to demonstrate feedback and feedforward control logics for a 
floor-heating greenhouse (CUC122.m). 

 

% Intgrl term of feedforward control     feedf.m 
function y=FEEDF(t) 
% This part is a copy of the eqs. 8, 9, 10, and 11 in the paper by  
% T. Takakura, et al., Trans. ASAE (Vol. 37, 939-945)  
global TAU; global DELA; 
  OMEGA=2*pi/24; A33=1;   K33=0; 
  TT=K33+A33*OMEGA*DELA*cos(OMEGA*(t+TAU))+A33*sin(OMEGA*(t+TAU)); 
  y = exp(t/DELA).*TT; 
 

Figure 9.6b. Subprogram of CUC122 (feedf.m). 

 

 Figure 9.7. Air temperature changes controlled by feedback and 
feedforward logics with the set point temperature. 
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MATLAB FUNCTIONS USED 
 

quad8 Numerically evaluate integral, higher order method.  
Q = QUAD8('F',A,B) approximates the integral of F(X) 
from A to B to within a relative error of 1e-3 using an 
adaptive recursive Newton Cotes 8 panel rule. 'F' is a string 
containing the name of the function. The function must 
return a vector of output values if given a vector of input 
values. Q = Inf is returned if an excessive recursion level is 
reached, indicating a possibly singular integral. 

Note: Function only available before and in version 5.3 (Release 
11), obsolete after version 6.0 (Release 12). 

quadl Numerically evaluate integral, adaptive Lobatto quadrature. 
Q = QUADL(FUN,A,B) tries to approximate the integral of 
function     FUN from A to B to within an error of 1.e-6 
using high order recursive adaptive quadrature.  The 
function Y = FUN(X) should accept a vector argument X 
and return a vector result Y, the integrand evaluated at each 
element of X.   

Note: Function available after version 6.0 (Release 12) 

PROBLEMS 

 
1. Verify that eq. 9.3 is the general solution of eq. 9.2. 
 
2. Examine how the system changes if there is only PI and P control logic, 

modifying the program CUC120. 
 
3. Evaluate the effect of KK on the system response by re-running the program 

CUC120 for several KK values. 
 
4. Change the input (SP) in the model CUC120 from the step change to a 

periodic change and plot the result. 
 
5. Change the gain (KK) as well as time constants (TD, TL) in order to get 

better fit with the set point and explain the effect of each factor on the 
accuracy. 

 
 


