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CHAPTER 3 

DIGITAL SIMULATION 

3.1. INTRODUCTION 
Simulation of continuous systems started with the use of analog computers.  Analog 
computers had been used widely, but they had several disadvantages.  Time and 
magnitude scaling were cumbersome.  Inaccuracies were caused by analog systems, 
which cannot separate signal change from noise in principle.  There were also 
frequent breakdowns in hardware components.  With the development of digital 
computers in the late 1960's and the growth in capacity of mainframes, digital 
simulation became the predominant technique for continuous simulation.  In the 
1980's, digital simulation spread to mini- and microcomputers.  The high speed and 
large memory size of microcomputers have enabled us to use almost the same 
simulation languages that once were only available on mainframes. 

The concept of digital simulation is the same with that used in analog computers.  
It is suitable for student lab work since PCs are now available in microcomputer labs 
in many schools. 

3.2. SYSTEM DYNAMICS 
The approach to simulating continuous systems, which is called System Dynamics 
has been well-known since it was used to simulate what would happen on the earth.  
The results of the simulation were published as "World Dynamics" by J. W. 
Forrester (1971) and later as "The Limits to Growth" by his successors such as D. H. 
Meadows (1972).  The approach itself was developed originally by Forrester, and 
the simulation language DYNAMO was invented by him.  It can be said that 
DYNAMO opened the era of digital simulation.  The “World Dynamics” model of 
population expansion, energy resource expenditure, and pollution increase on the 
earth was so popular that its rather pessimistic predictions astonished public 
administrators in many countries in the 1970's.  This kind of model cannot predict an 
event such as an energy crisis, which is caused politically and is discontinuous; 
when a crisis occurred, the rate of consumption of energy resources decreased, and 
the whole situation was then reconsidered and modified. 

The language DYNAMO is more or less in the form of difference equations and 
has not been well used because more friendly languages such as CSMP were 
developed soon after.  System dynamics is defined as a methodology to analyze 
system behaviour including feedback loops.  The main applications are for analyses 
of social, biological, and ecological processes with many nested feedback loops and 
of non-linear systems. 
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3.3. SIMULATION LANGUAGES 
Languages are classified into two groups: those for continuous systems and those for 
discrete systems.  Languages such as GPSS and SIMAN are mainly for discrete 
systems; recent versions can handle continuous simulation too (Pegden, 1986), 
although all programs for continuous systems are more or less of the nature of 
FORTRAN subroutines.  On the other hand, a continuous system simulation 
language such as ACSL can handle discrete simulation.  Therefore, the two groups 
are getting closer, although there are still large discrepancies between the two.  We 
are mostly interested in simulation of continuous systems, and it will be emphasized 
here.       

Digital simulation languages have been developed to capitalize on the recent 
developments in simulation of continuous systems and the advantages of digital 
computers.  They free us from the disadvantages of both time and magnitude scaling 
which were needed on analog computers.  They take advantage of the higher 
accuracy of each component more than analog computers, and place no actual 
limitation on the number of functions used.  Popular languages were DYNAMO, 
MIMIC, DSL/90, CSMP and CSSL.   

The languages were then separated into two groups after transient languages 
such as MIMIC were discounted.  One was the group represented by CSMP 
(Continuous System Modeling Program), developed by IBM, and the other was 
CSSL, which was mostly popular in Europe.  The basic types of languages have 
similar capabilities, but with some differences in expressions.  In biological research, 
it can be said that CSMP was still more popular than the other languages available 
on mainframes.  PC versions of this kind of simulation language have been 
developed: for example, micro-CSMP (CSMP version for PCs and compatibles), 
PCSMP (similar to micro-CSMP with some hardware restriction), ACSL 
(Advanced Continuous System Language, an advanced version of CSSL) has much 
more flexibility but needs more typing in debugging processes and has hardware 
protection), and SYSL (80 - 90% compatibility with CSMP).  Micro-CSMP was 
chosen as the language in the first edition of this book.  

Since then, several new languages have been developed, such as SIMNON, 
DYMOLA and Stella.  SIMNON is very similar to ACSL and CSMP.  On the 
other hand, DYMOLA and Stella are called modelling languages and are more or 
less object-oriented languages (see Cellier, 1991).  They have functions to make a 
model and can cooperate with other simulation languages such as ACSL, SIMNON, 
MATLAB (SIMULINK) and FORTRAN.  Stella and DYMOLA introduce a 
relatively large number of functions for particular purposes and their functions 
might not be needed for the models in this book.  Inputs and outputs are connected 
with special symbols.  Flow diagrams are the main part of the program instead of 
description by equations.  An ecological modelling group in the Netherlands that 
first developed PCSMP also developed FST(Fortran Simulation Translator).  FST 
is more or less the same as PCSMP but is much more restricted by the tight 
grammar of FORTRAN, such as no mixture of integer and real numbers, than 
PCSMP.  For example, TO can not be a variable since it is a part of the GO TO 
statement of FORTRAN. 
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A group of mathematical software has been developed including Mathematica, 
MATLAB, Mathcad, and Maple.  These types of the software were originally 
developed to find formulas and perform mathematical calculations such as on 
matrices.  MATLAB is linked with SIMULINK, which is a symbolic solver similar 
to analog computer techniques and Stella (see Bennett, 1995). 

Since the operating system of PCs has changed from DOS to Windows and a 
Windows version of micro-CSMP or PCSMP does not exist, a new Windows-
based simulation language is required to accompany the models developed in this 
book. MATLAB  (SIMULINK), product of MathWorks Inc., USA, is one of the 
most successful software packages currently available and is widely used for 
mathematical calculations.  It is suited for work in control and in simulation as well.  
It is a powerful, comprehensive and user-friendly software package for performing 
mathematical computations.  Equally as impressive are its plotting capabilities for 
displaying information.  In addition to the core package, referred to as MATLAB, 
there are ‘toolboxes’ for several application areas.  However, only the core package 
is required to solve the models of this book with one example in SIMULINK, one 
of the toolboxes. 

The concept of any of these languages is based on the analog computer; that is 
the same.  Once you become familiar with one simulation language, it is much easier 
to understand one of the others than to go from FORTRAN to BASIC. 

It is clear that language is a tool, and you can make a model in a common 
language such as FORTRAN or BASIC.  However, it is much easier to make a 
model in a simulation language and to understand a model someone else has 
developed than in a programming language, because a model in a simulation 
language is more like a set of mathematical equations than a list of programs. 

3.4. DIGITAL SIMULATION BY CSMP AND MATLAB 

3.4.1. Concept of the analog computer 

The concept of analog computers is alive in digital simulation.  One of the most 
important functions on analog computers is integration.  Its symbol, shown in Fig. 
3.1, is well-known to all engineering students.  This figure exactly corresponds to 
the hardware configuration on analog computers.  If dY/dt (derivative of an arbitrary 
function y due to time t is supplied into the operational amplifier whose function is 
integration, the original function Y can be obtained through an integrator which is 
shown by the integral sign.  The minus sign is due to the hardware configuration.  If 
input and output wires of the amplifier are connected together after the sign is 
converted, exp(t) is obtained as the output y. On analog computers you need not 
solve the equation.  It can be said that the computer solves the differential equation 
you supply.  In SIMULINK, the integrator is simply replaced by the function 
named 1/S, and without an inverter for sign change the same output is obtained. 

Using digital simulation languages such as CSMP, the process is similar; that is, 
for example, in CSMP a function to integrate according to time (INTGRL) is 
available with other functions. 
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Figure 3.1. Diagram of integration on analog computers. 

3.4.2. Comparison of CSMP and MATLAB programs with mathematical equations  

Simulation of either a linear or a non-linear system, which is time-dependent -- in 
other words, dynamic and continuous -- can be done using analog computers.  
Simulation using analog computers has the advantage of being equation-oriented.  
Analog computers have many functions, such as integration, arbitrary function 
generation, and implicit expression.   

Plant growth is a good example of non-linear and non-steady-state systems. In 
general, plant growth that is continuously changing can be expressed as a system of 
differential equations, 

 
dY1(t)/dt = f1 ( Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t) ) 
dY2(t)/dt = f2 ( Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t) ) 

              .  
dYn(t)/dt = fn ( Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t) ) 

 
where Y1 to Yn are n state variables such as photosynthesis, and leaf and root 

weights, E1 to Em are m environmental or boundary conditions such as solar 
radiation, temperature and CO2 concentration, and f1 to fn are functional relations 
which describe the rate of change of each state variable.  With n unknown variables 
Y1 to Yn, and n differential equations, unique solutions can be derived numerically. 

These equations are expressed in an integral form in CSMP as 
 

Y1(T)=INTGRL(IY1, f1(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T),…,Em(T))) 
Y2(T)=INTGRL(IY2, f2(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T),…,Em(T))) 
. 
Yn(T)=INTGRL(IYn,fn(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T), … ,Em(T))) 

 

where IY1, IY2, . . . , IYn are initial conditions for Y1, Y2, . . . , Yn, respectively, 
and we still have n equations for n unknown variables. 
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Let's consider more details using a concrete expression.  Suppose we have a 
mathematical expression as follows: 

 
    d2x/dt2 = F - A * dx/dt - B * x 
 
where initial conditions are x(0) = X0, dx(0)/dt = DX0.  Then a complete CSMP 
program for this is, 

 
     X = INTGRL (X0, DX) 
     DX = INTGRL (DX0, F - A * DX - B * X) 
     TIMER  FINTIM = 10.0, OUTDEL = 0.5, DELT = 0.1 
     PRTPLOT X 
     END 
     STOP 
 

The main point is that the mathematical expression for plant growth is in the 
derivative form and the corresponding expression in CSMP is in integral form.  The 
first two equations in the CSMP program are essential ones.  It is not difficult to 
understand the correspondence between these two equations and the differential 
equation in the mathematical expression, if you notice that the CSMP program has 
the same variable DX (dx/dt in the mathematical expression) in the first two 
equations and that the first terms in the parentheses of the function 
INTGRL(INTeGRaL) are initial conditions.      

The mathematical expression can be easily divided into two differential 
equations: 

 
        x     = ∫ dx/dt (dt) 

        dx/dt = ∫ ( F - A * dx/dt - B * x ) (dt)    

 
TIMER in the CSMP program means time sets for numerical integration.  

FINTIM is the finish time, OUTDEL is the time step for the output and DELT is 
the time increment for integration.  PRTPLOT (PrinT & PLOT) is a kind of output 
control, which gives a printout of numerical values as well as a printer plot.  TIME 
is reserved as a system variable and is incremented by DELT.  In CSMP, capital 
letters can only be used for expression, except in comments that start with an 
asterisk. 

In MATLAB, two program files need to be generated to solve the above 
problem: A main program and an ODE function subprogram.  A semicolon is 
required at the end of each command except for comments that start with a percent 
sign.  As shown in Fig. 3.2, the dimensions of both y0 and dy are 2 rows by 1 
column.  The dimensions of y0 and dy need to be consistent.   
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% main.m 
T0=0; Tfinal=10; 
y0=[X0; DX0]; 
[t,y]=ode23(‘subprg’,[T0 Tfinal],y0); 
plot(t,y); 

% subprg.m 
function dy=subprg(t,y) 
X=y(1); % define y1 
DX=y(2); % define y2 
DIFF_X = DX; % expression 1:  dy1/dt 
DIFF_DX=F - A * DX - B * X; % expression 2:  dy2/dt 
dy=[ DIFF _X; DIFF _DX]; % dy=[expression 1; expression 2]  

 

Figure 3.2. Structure of MATLAB programs for solving the differential equations. 

The biggest advantage in CSMP or MATLAB programs is that the original 
equation need not be split into the form the computer can understand, as is always 
required in other common languages.  Therefore, the program itself becomes very 
easily understandable for not only the programmer but also other people. 

3.5. MODEL STRUCTURE AND REPRESENTATION 

Models are classified into several categories.  As we are concentrated into biological 
and environmental models, classification based on model structures should be noted.  
In order to understand how to make a model, the physical structure is the most 
important aspect to be considered.  Thus, three main categories, lumped or 
distributed models, steady state or dynamic models and linear or non-linear models, 
are of primary concern.  The CSMP and MATLAB languages are particularly 
powerful for solving dynamic non-linear system behaviour.  To simplify the model, 
lumped models in which one variable is assigned to each object to express an 
average are very often used.  For example, normally one variable is assigned to the 
inside air temperature of a greenhouse.  However, if there is a large temperature 
gradient in one object, such as the soil layer, more than two variables can be 
assigned to the object even if the model is one-dimensional.  The soil layer is 
divided into several layers, and in each soil layer temperatures are defined separately.  
This kind of model is called a distributed model. Air temperature in the greenhouse 
can also be divided into separate regions (see section 6.5). 

3.5.1. Differential equation 

Exponential growth can be expected if the relative growth rate of a living creature is 
constant.  Let us consider population increase for humans.  Assuming constant birth 
rate and no mortality, population increase rate is expressed as the product of the 
present population and the relative growth rate, that is, 
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 dP/dt = BR *  P  (3.1) 

where P is the present population and BR is the birth rate (births/unit time). 
If BR is constant, eq. 3.1 is linear and is easily solved analytically. The solution 

is P = A*exp (BR * t), assuming the initial condition of P is A.  This is programmed 
in the following manner by CSMP: 

 P = INTGRL(A,   BR * P ) (3.2) 

where INTGRL is one of the powerful functions of CSMP used to integrate the 
second argument in the parentheses in terms of time.  The initial condition is placed 
as the first argument in the same parentheses.  The expression can be left as implicit.  
The solution of eq. 3.1 is programmed in the following manner in MATLAB: 
 

% main.m 
[t,y]=ode23(‘F’, TSPAN, A) 
% F.m 
function  dy=F(t, y) 
DIFF_P=BR * y;  % define y1=y , expression 1: dy1/dt 
dy=[DIFF_P]; 

 
where TSPAN = [T0 TFINAL] integrates the system of differential equations y' = 
F(t,y) from time T0 to TFINAL with initial condition A.  'F' is the name of an ODE 
file.  

Numerical integration is carried out in the background of this expression, and 
several integration methods are available.  Therefore, this one expression is 
equivalent to approximately 20 to 50 FORTRAN statements for numerical 
integration.  Since all calculations are conducted numerically, the system to be 
simulated is not necessarily linear. 

If we consider death by disease or other reasons, eq. 3.1 can be changed to 

 dP/dt = P * (BR - DR)        (3.3) 

where DR is mortality. This equation means that a small population increase (dP) in 
a small time increment (dt) is equal to net increase, the difference between 
population inflow (BR * P) and  outflow (DR * P). 

Sometimes flow charts or diagrams which were originally used for DYNAMO 
are used for CSMP and MATLAB, as shown in Fig. 3.3.  This figure is the diagram 
of eq. 3.3. The population level is express by a rectangular shape. BR and DR are 
flow rates, and straight lines show the flow of people.  In this figure, it is assumed 
that people flow from a kind of source to a kind of sink, both of which are indicated 
with cloud-like symbols.  Valves can change flow rates in an actual flow, such as 
water in pipelines.   

The shape of the valve is used to calculate flow rates, BR and DR in the present 
case.  This kind of flow diagram can be an aid to understanding the program, but 
sometimes it is cumbersome, while direct translation from mathematical equations is 
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straight- forward.  In the present textbook, therefore, no flow charts or diagrams are 
used. 

This concept of the relationship between flow and level can be applied to similar 
systems such as heat flow and mass flow in the air and in soil.   

Figure 3.3.  Flow diagram of eq. 3.3. 

3.5.2. Description of systems 

The important point in the description of systems is that the basic concept of the 
model is a flow of something: for example, it can be heat, water vapor or carbon 
dioxide in the air.  Therefore, the governing rule is conservation of these 
components. 

 

 

Figure 3.4. Energy balance equation.  
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In Fig. 3.4, energy balance of the soil surface is considered.  We are assuming a 
hypothetical very thin film soil layer at the surface, which does not have appreciable 
volume to store energy in it.  Since energy conservation holds here, the summation 
of all energy inflow and outflow is zero.  In other words, net incoming energy is 
equal to net outgoing energy.  This is the basic concept of how to build up an 
equation to describe a system.  Fig. 3.5 shows how to build a differential equation.  
Let's assume there is a mass of air or water of which the volume is V, density is r, 
and volumetric heat capacity is Cp.  Energy Q1 and Q3 are coming in and Q2 is 
going out from the mass.  Then, the energy change of this mass in dt time is 
expressed as dQ/dt, and it is clearly equal to Q1 - Q2 + Q3 (the difference of inflow 
and outflow).  This energy change can be easily converted to temperature change by 
introducing thermal properties of the mass as shown in the figure.  This is a basic 
differential equation to show the temperature change of the mass.   

 

 Figure 3.5. Differential equation to express an energy balance. 

Figure 3.6.  Heat flow and temperature regime in the soil layer: 
(a). Left: Heat flow, (b). Right: Electric network analogy. 
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3.5.3. Heat flow and temperature regime in the soil 

Heat flow in the soil is complicated because heat flow is associated with water flow.  
However, in most cases, it is sufficient to consider heat flow using apparent thermal 
conductivity, which includes the effect of water flow.  Then heat flow in the soil is 
that in a solid body. 

Referring to Fig. 3.6a, let us suppose the flat ground is divided into three even 
layers in depth and the temperatures at the middle of each layer are T1, T2 and TBL, 
respectively.  The bottom temperature TBL is a boundary condition and the 
temperature at the surface of the ground is TBU. 

Referring to this analogy and the scheme in Fig. 3.5, the following equations are 
derived, as the temperature increase in the layer in a small time increment is equal to 
the total heat flow in the layer considered from the surroundings, in this case the 
upper and lower layers: 

It is clear from the same figure that an electric passive network system, which is 
called π (pi) network, can represent the heat flow in the soil layer (see Fig. 3.6b). 

 CS*VS*(dT1/dt) = KS*AS*((TBU-T1)/DZ*2+(T2-T1)/DZ)  (3.4) 

 CS*VS*(dT2/dt) = KS*AS*((T1-T2)/DZ+(TBL-T2)/DZ) (3.5) 

where CS is volumetric heat capacity of the soil, VS is the volume of the soil layer, 
AS is the surface area of the soil layer, DZ is the thickness of one layer, KS is the 
thermal conductivity of the soil, and t is time.  We assumed that heat flows in from 
the upper and the lower layers.  This is appropriate if we consider properly the signs 
involved.  If the flow is opposite previously assumed direction, then the sign is 
inverted automatically. 

These two equations are in the differential form.  Again, they can be rearranged 
into the integral forms of CSMP (eqs. 3.6a and 3.7a) and the differential forms of 
MATLAB (eqs. 3.6b and 3.7b) as shown below:  

 T1 = INTGRL(IT1, KS*((TBU - T1)*2.0 + (T2 - T1))/ DZ/DZ/CS) (3.6a) 

 T2 = INTGRL(IT2, KS*((T1 - T2) + (TBL - T2))/ DZ/DZ/CS)       (3.7a) 

 DIFF_T1 = KS*((TBU - T1)*2.0 + (T2 - T1))/ DZ/DZ/CS      (3.6b) 

 DIFF_T2 = KS*((T1 - T2) + (TBL - T2))/ DZ/DZ/CS       (3.7b) 

With two unknowns, T1 and T2, and two boundary conditions, TBU and TBL, 
the system can be solved.    

Let's assume that heat flow in the soil layer shown in Fig. 3.7 is two-dimensional, 
with vertical and horizontal flows.  Each heat flow is proportional to the temperature 
gradient and thermal conductivity and inversely proportional to the distance.   
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Figure 3.7.  Basic diagram of heat flow in a system. 

Suppose each temperature shown in the figure is at the center of a soil block.  
Then the differential equation for the system is: 

CS * VS * (dT/dt) = KS * (AS * ((TU-T) / DZ + (TB-T) / DZ) + 
AF * ((TR-T) / DX + (TL-T) / DX))          (3.8) 

where KS is the thermal conductivity of the soil, AS is soil surface area for vertical 
heat flow, AF is that for horizontal heat flow, DX is the horizontal distance from 
center to center of soil blocks, DZ is the vertical distance from center to center, and 
CS is the heat capacity of the center soil block.  

The differential form is more common in mathematical expressions, but the 
integral form is straightforward for programming in simulation languages.  
Therefore, the CSMP and MATLAB expressions for eq. 3.8 are as follows: 

T = INTGRL(IT, KS * (((TU - T) + (TB - T)) / DZ / DZ ...        
+ ((TR - T) + (TL - T)) / DX / DX) / CS) (3.9a) 

DIFF_T = KS * (((TU - T) + (TB - T)) / DZ / DZ  + ...   
((TR - T) + (TL - T)) / DX / DX) / CS (3.9b) 

Model representation is not necessarily explicit.  The form of integration always 
includes implicit expression, and the function IMPL in CSMP or a similar function 
fzero in MATLAB can be used to solve implicit functions except for integrals.  
Programming is straightforward and can be a kind of translation of mathematical 
equations into the expressions in each language.  Therefore, the following several 
examples are the best way to understand programming and thus modelling.  An 
ellipsis (...) indicates that the statement continues to the following line in the CSMP 
and MATLAB programs. 

 
DZ 

TF 

TL TR 

TU

TB

Soil Block
T 

DZ

DX 

AF

AS

VS 

CS 

T 

VS = AS * DZ
   = AF * DX 
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3.6. A MODEL FOR TEMPERATURE REGIMES IN THE SOIL (CUC01) 

3.6.1.  Model description 

Fig. 3.8 shows the Command Window of MATLAB running the cuc01 model.  The 
user can enter ‘cuc01’ or ‘cuc01(n)’ to run the model, where n is 1 to 4.  Entering 
‘cuc01’ will have the same result as with ‘cuc01(1)’.  Fig. 3.9 shows the result of 
the CUC01 model in the Figure Window.  Fig. 3.10 shows the scripts of the model, 
which consists of a main program (Fig. 3.10a) and a function subprogram (Fig. 
3.10b).  In the MATLAB program, % denotes that the line is a comment only. The 
command ‘function cuc01(trial)’ is the first line of the script, in which ‘cuc01’ is 
the name of the function and needs to be consistent with the file name.  The variable 
‘trial’ contains the number carried into the program.  If there is no argument or the 
argument value is larger than 4 or smaller than 1, the value of 1 will be assigned to 
‘trial’.  Based on the ‘trial’ value, the ‘switch…case…end’ provides branching 
with various pairs of ks and cs values. The thermal conductivity of the soil, ks 
indicates how fast the heat will transfer through the soil, and the heat capacity of the 
soil, cs indicates how much heat can be store by the soil.  These values are declared 
as global variables in the second line of the scripts listed in Fig. 3.10a and Fig. 3.10b. 

The matrix variable y0 contains the initial temperatures of T1 to T5.  As listed in 
Fig. 3.10a, y0 is a 5 by 1 matrix (column vector).  The y0 matrix is then fed to the 
subprogram ‘soil01.m’ using the ode23() function.  The core of the main program of 
the CUC01 model lies in the following command: [t, y] = ode23('soil01',[tstart 
tfinal],y0);  

Several functions can be used in solving simultaneous ordinary differential 
equations, including ode23, ode45, ode113, ode15s, ode23s, ode23t and ode23tb.  
The major difference among these functions is in the numerical methods used.  For 
non-stiff differential equations, ode23, ode45 and ode113 can be used.  For stiff 
differential equations, ode15s or ode23s can be used.  More details can be found 
from online help of MATLAB; for example, type ‘help ode23’ in the Command 
Window followed by the Enter key to learn more about ode23.  Some helpful 
information is listed in the last section of this Chapter. 

The last line of the ‘soil01.m’ subprogram is the dy matrix.  The dimensions of 
this matrix must be consistent with the y0 matrix listed in ‘cuc01.m’. 

 



 DIGITAL SIMULATION 31 

 

Figure 3.8. Command Window of MATLAB running cuc01 model. 

 

Figure 3.9.  Figure Window of MATLAB running cuc01 model. 
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%    Temperature regime in the soil layer CUC01.m 
%    Boundary condition is surface temperature. 
%    Function required: soil01.m 
% 
function cuc01(trial) 
global ks cs  
if nargin==0    % If no argument  
   trial=1;   % use 1 as the default. 
end 
if trial>4 | trial <1  % If argument_value >4 or <1 
   trial =1   % use 1 as the default 
end 
switch trial 
case 1 
    ks=5.5;cs=2000; % default values 
case 2 
 ks=11;cs=2000;   % ks doubled 
case 3 
 ks=5.5;cs=4000;  % cs doubled  
case 4 
    ks=11;cs=4000;  % ks, cs both doubled 
end 
% ks: Soil thermal conductivity (kJ/m/C) and ks/3.6 (W/m/C) 
% cs: Heat capacity of soil (kJ/m3/C) 
% 
tstart = 0; tfinal = 48;  
y0=[10;10;10;10;10];    % 5x1 matrix for initial conditions. 
[t,y] = ode23t('soil01',[tstart tfinal],y0);   
% calling function ode23t with constants and eqs. in 'soil01.m' 
%      with simulated time from tstart to tfinal 
%     with initial conditions in matrix y0 and 
%      with calculated answer in matrix y. 
% 
plot(t,y(:,1),'b^-',t,y(:,2),'gV-',t,y(:,3),'r+-',… 

t,y(:,4),'c*-',t,y(:,5),'ko-');  
axis([-inf,inf,5,15]); 
grid on; 
xlabel('time elapsed, hr'); 
ylabel('Soil temperature, ^oC');  
tit=['Given conditions: ks=',num2str(ks),' and cs=', num2str(cs)]; 
title(tit); 
legend('T1','T2','T3','T4','T5',2); 
fprintf('\n  Running Case %1.0f: given ks=%3.0f and cs=%4.0f. \n\n',… 

 trial,ks, cs); 
disp('  Please check Figure_Window for simulated results.'); 
disp('  Totally, 5 curves showing T1, T2, T3, T4 and T5 versus t.');    

 

Figure 3.10a.  Main program of model for temperature of soil layers (CUC01.m). 

The command ‘plot(t, y(:,1),'b^-',....)’ draw five curves on the Figure Window 
as shown in Fig. 3.9.  The first and second arguments are the data for the x and y 
axes.  The length of the matrices t and y(:,m), where m equals 1 to 5, need to be the 
same.  The third argument is a character string that defines line types, plot symbols 
and color to be displayed on the screen.  Entering ‘help plot’ in the Command 
Window can reveal all the possible combinations as listed below. 
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y Yellow . Point - Solid 
m Magenta O Circle : Dotted 
c Cyan X  x-mark -. Dashdot 
r Red + Plus -- Dashed 
g Green * Star   
b Blue s Square   
w White d Diamond   
k Black v Triangle (down)   
  ^ Triangle (up)   
  < Triangle (left)   
  > Triangle (right)   
  p Pentagram   
  h Hexagram   

 
The command ‘axis’ allows self-arrangement on both x and y axes.  The ‘-inf’ 

and ‘inf’ stand for no preset lower bound (LB) and upper bound (UB) of this axis.  
The first two parameters are for the LB and UB of the x axis and the third and fourth 
parameters are for the LB and UB of the y axis, respectively. 

There are four commands frequently used after the plot command.  Commands 
‘xlabel(‘text’)’ and ‘ylabel(‘text’)’ allow the user to assign text to the x and y axes; 
commands ‘title(‘text’)’ and ‘legend(‘text1’,’text2’,…,pos)’ allow the user to 
assign text to the title of the plot and to the legend, respectively.  The last argument 
‘pos’ of ‘legend()’ places the legend in the specified location: 

 
        0 = Automatic "best" placement (least conflict with data) 
        1 = Upper right-hand corner (default) 
        2 = Upper left-hand corner 
        3 = Lower left-hand corner 
        4 = Lower right-hand corner 
       -1 = To the right of the plot 

 
The ‘fprintf(format,a,…)’ command writes formatted data to the screen, and 

‘format’ is a string containing C language conversion specifications.  Conversion 
specifications involve the character %, optional flags, optional width and precision 
fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E, g, 
G, c, and s.  For more details, see the ‘fprintf’ function description in the online 
help or refer to a C language manual.  The special formats \n,\r,\t,\b,\f can be used to 
produce linefeed, carriage return, tab, backspace, and form feed characters 
respectively.  Use \\ to produce a backslash character and %% to produce the percent 
character.  The command ‘disp(x)’ can display an array on the screen.  If x is a 
string of text, the text is displayed.  The results of the last three commands of the 
script listed in Fig. 3.10a can be found in Fig. 3.8 as indicated by the large ‘}’ sign. 

Fig. 3.10b lists the script of ‘soil01.m’.  Since the ode function must return a 
column vector, dy is the column vector to be returned as listed in the second line 
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from the bottom of Fig. 3.10b.  In the script for calculating TF, ‘pi’ is used, and is a 
reserve word of MATLAB, representing π.  In the subprogram ‘soil01.m’, there 
are 5 unknowns, y(1) to y(5) with 5 ordinary differential equations. 

 
 

% Subprogram to be used with cuc01.m                       soil01.m  
function dy = soil01(t,y) 
global ks cs  
z=0.1; % Depth of each soil layer (m) 
T0=10;  % Average outside temperature (C) 
TU=5;   % Amplitude, temperature variation 
TBL=10; % Boundary soil temperature (C) 
TF=T0+TU*sin(2*pi/24.*(t-8));  
% t is time (in hours) 
% TF: Soil temperature of surface layer (C) 
%     Maximum temperature occurs  
%     at 2 o'clock in the afternoon 
T1=y(1);T2=y(2);T3=y(3); 
T4=y(4);T5=y(5); 
DIFF_T1=2*(TF-T1)+(T2-T1);    
DIFF_T2=(T1-T2)+(T3-T2); 
DIFF_T3=(T2-T3)+(T4-T3);      
DIFF_T4=(T3-T4)+(T5-T4); 
DIFF_T5=(T4-T5)+(TBL-T5)*2;   
val=ks/z/z/cs; 
dy = [DIFF_T1; DIFF_T2; DIFF_T3; DIFF_T4; DIFF_T5]*val; 
% Format of dy should be consistent with y0 in cuc01.m (5x1 matrix) 

 

Figure 3.10b. Subprogram of cuc01 model (soil01.m) and soil diagram. 

3.7. APPLICATION TO STEADY STATE MODELS 

Once the dynamic model for non-steady-state conditions has been developed, it can 
be easily applied to steady-state conditions.  For example, if the two boundary 
conditions in eqs. 3.4 and 3.5 are constant, the left-hand side of the equations will 
become zero after a certain period of time.  Then, the temperature gradient would be 
linear, and each temperature would be found by interpolation using the physical 
properties of the soil layer.  

3.8. MORE ON MATLAB 

Fig. 3.11 shows ‘cuc01a.m’, which is an expansion of ‘cuc01.m’ with more 
MATLAB commands included.  The command ‘tic’ starts a stopwatch timer; ‘toc’ 
reads the stopwatch timer.  The execution time required between commands ‘tic’ 
and ‘toc’ will be displayed on the screen upon the execution of ‘toc’.  Note that the 
y0 matrix looks different from the one listed in ‘cuc01.m’; however, they are in fact 
the same.  The y0 listed in Fig. 3.10a is a 5 by 1 matrix (column vector) and the y0 
listed in Fig. 3.11 is the transpose matrix of a 1 by 5 matrix.  The transpose matrix of 
a row vector is again, a column vector. 

*
TF

*
*
*
*
**TBL

T1

T2

T3

T4

T5

z 
z 

z 

z 

z 

z 
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The command ‘h1=findobj('tag','Temperature')’ will find the object using 
‘Temperature’ as a tag name and assign the handle to the h1 variable.  Following by 
‘close(h1)’ will close the h1 object, that is the one with ‘Temperature’ as a tag name.  
Adding these two commands, prior to the ‘figure()’ command can prevent opening 
too many Figure Windows with the ‘Temperature’ tag name if the program is 
executed several times. 

The command ‘figure()’, by itself, creates a new Figure Window.  Many 
properties were involved in the Figure Window such as ‘tag’, “Resize’, ‘MenuBar’, 
‘Name’, ‘NumberTitle’, ‘Position’, etc.  Fig. 3.9 was created without using the 
‘figure()’ command and Fig. 3.12 was created with the ‘figure()’ command listed in 
the ‘%--[Figure 1]--’ section of the script in Fig. 3.11.  Fig. 3.12 has a user-defined 
‘Name’, that is the text written at the top of the Figure Window, and also is without 
the command menu and icons listed in the second and third rows from the top of Fig. 
3.9. 

Assigning figure to a handle using the command ‘h=figure(…)’, followed by 
‘get(h)’, will generate a list of figure properties and their current values.  More 
details can be found in online help.  

The command ‘h=plot(…..)’ assigns the plotting operation to a handle ‘h’, 
allows future manipulation on this plot such as setting the line width, and returns its 
handle. 

 
 

%    Temperature regime in the soil layer                   CUC01a.m 
%    Boundary condition is surface temperature 
%    Function required: soil01.m 
% 
function cuc01a(trial) 
global ks cs 
if nargin==0 | trial>4 | trial <1,  trial =1; end 
switch trial 
 case 1, ks=5.5;   cs=2000; 
 case 2, ks=11;   cs=2000;  % ks doubled 
 case 3, ks=5.5;   cs=4000; % cs doubled  
 case 4, ks=11;  cs=4000; % ks, cs both doubled 
end 
%---[Core]---------------------------------------------------------- 
tic      % start recording time 
tstart = 0;tfinal = 48;      
IT1=10;IT2=10;IT3=10;IT4=10;IT5=10;    
y0 = [10 10 10 10 10]' ;  % Transpose of row matrix is column matrix 
[t,y] = ode23('soil01',[tstart tfinal],y0);   
toc % show elapsed time from tic to toc 
%---[Figure1]------------------------------------------------------- 
h1=findobj('tag','Temperature'); close(h1); 
% prevent from opening too many same figure windows 
figure('tag','Temperature','Resize','on','MenuBar','none',... 
   'Name','CUC01a.m (Figure 1: Temperatures in 5 soil layers)',... 
   'NumberTitle','off','Position',[160,80,520,420]); 
h=plot(t,y(:,1),'k-*',t,y(:,2),'b:o',t,y(:,3),'r:^',t,y(:,4), ,... 
   'go-',t,y(:,5));  
set (h,'linewidth',2); axis([-inf,inf,5,15]);grid on; 
xlabel('time elapsed, hr'); ylabel('Soil temperature, ^oC');  
legend('T1','T2','T3','T4','T5'); 
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%---[Figure2]------------------------------------------------------- 
h2=findobj('tag','Temp5');close(h2); 
h2=figure('tag','Temp5','Resize','on','MenuBar','none',... 
   'Name','CUC01a.m (Figure 2: Temperature in each soil layer)',... 
   'NumberTitle','off','Position',[200,40,520,420]); 
figure(h2); subplot(5,1,1); plot(t,y(:,1),'k-*');  ylabel('T1'); 
% draw the 1st plot out of 5 row x 1 col. plots per figure  
axis([-inf,inf,5,15]); grid on; 
subplot(5,1,2); plot(t,y(:,2),'b:o');  ylabel('T2'); 
% draw the 2nd plot out of 5 row x 1 col. plots per figure 
axis([-inf,inf,5,15]); grid on;    
subplot(5,1,3); plot(t,y(:,3),'r:^');  ylabel('T3'); 
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on; 
subplot(5,1,4); plot(t,y(:,4),'go-'); ylabel('T4'); 
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on; 
subplot(5,1,5); plot(t,y(:,5));  ylabel('T5'); 
xlabel('time elapsed, hr'); 
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on; 
clc; % clear command window 
disp('  Thank you for using CUC01a.');   disp(' ');   
disp('  You can enter ''close all'' to close Figure_Windows.'); 

 

Figure 3.11. Main program of CUC01a model (CUC01a.m). 

 

Figure 3.12. Figure generated from ‘%--[Figure 1]--' section of cuc01a.m. 
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Figure 3.13. Figure generated from ‘%--[Figure 2]--' section of cuc01a.m. 

The script listed in the ‘%--[Figure 2]--‘ section of Fig. 3.11 generates Fig. 3.13.  
The command ‘figure(h)’ makes h the current figure, forces it to become visible, 
and brings it to the foreground, in front of all other figures on the screen.  If Figure h 
does not exist and h is an integer, a new figure is created with handle h.  The 
command ‘subplot(m,n,p)’ breaks the Figure Window into an m-by-n matrix of 
small axes, and selects the p-th axes for the current plot.  The command ‘plot()’ 
following ‘subplot(…,p)’ draws the plot in the p-th axes.  As shown in Fig. 3.13, 
there are five subplots in one Figure Window.  The last three subplots have different 
y ticks compared with the first two subplots. These y ticks of the last three subplots 
were generated using the ‘set(gca,’ytick’,[8 10 12])’ command.  The term ‘gca’, 
representing ‘get handle to current axis’, is a reserve word in MATLAB.  Both 
‘ytick’ and ‘xtick’ can be assigned by the user with the ‘set(gca,..)’ command.  The 
command ‘clc’ is used to clear the Command Window. 

3.9. SIMULINK 

SIMULINK is one of the toolboxes linked with MATLAB and is suitable for 
dynamic simulation.  It is a kind of graphical approach and is based on the concept 
of analog computers as shown in Fig. 3.14.  This figure shows the model CUC01 in 
SIMULINK.  Fig. 3.1 can be a step to understanding this figure.  In Fig. 3.14, the 
integrator is labeled 1/S, the summers are shown as squares with plus and minus 
signs, and the coefficients to be multiplied are in triangles.  The construction of the 
model is straightforward.  The flow is from left to right.  There are two boundary 
conditions, the soil surface temperature change is given by a sine wave (all 
parameters are hidden under each symbol) plus a constant, and the bottom 
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temperature is given as a constant 10.  The scope symbol is the output, and any of 
the outputs T1 through T5 can be seen through the scope.  It is apparent that the first 
line components are all for the temperature of the first soil layer, T1.  T1 is the 
output of the first integrator and is fed back as an input to the summers with a minus 
sign.  Then, the first boundary condition, the soil surface temperature minus T1 is 
one of the two inputs to the next summer.  Following this approach, the whole 
diagram can be understood. 

In this book, models in SIMULINK are not included because of the space 
limitations.  
 

 

Figure 3.14.  The model CUC01 in SIMULINK. 
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MATLAB FUNCTIONS USED 
 

% Comments. 
; Prohibit from display to the monitor. 
: Represent a complete row or column of a matrix. 
… Continue in next line. 
axis Control axis scaling and appearance. Axis([XMIN XMAX YMIN 

YMAX]) sets scaling for the x- and y-axes on the current plot. 
clc Clear command window. 
disp Display array. Disp(X) displays the array, without printing the array 

name. In all other ways, the same as leaving the semicolon off an 
expression except that empty arrays don't display. If X is a string, the 
text is displayed. 

figure Creates a new figure window, and returns its handle. 
findobj Find objects with specified property values. 
fprintf Write formatted data to screen. 
global Define global variable. 
grid Grid lines. Grid on adds grid lines to the current axis. Grid off takes 

them off. Grid , by itself, toggles the grid state of the current axis. 
gca Get handle with Current Axis. 
legend Graph legend. Legend(string1,string2,string3, ...) puts a legend on the 

current plot using the specified strings as labels. Legend(...,Pos) places 
the legend in the specified location: 
        0 = Automatic "best" placement (least conflict with data) 
        1 = Upper right-hand corner (default) 
        2 = Upper left-hand corner 
        3 = Lower left-hand corner 
        4 = Lower right-hand corner 
       -1 = To the right of the plot 

num2str Convert number to string. 
ode23 Solve non-stiff differential equations, low order method. 

(MATLAB 4 and higher versions) 
[T, Y] = ode23('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates 
the system of differential equations y' = F(T,Y) from time T0 to 
TFINAL with initial conditions Y0. 'F' is a string containing the name of 
an ODE file. Function F(T, Y) must return a column vector. Each row in 
solution array Y corresponds to a time returned in column vector T.  

ode45 Solve non-stiff differential equations, medium order method. 
(MATLAB 4 and higher versions) 

ode113 Solve non-stiff differential equations, variable order method. 
(MATLAB 5 and higher versions) 

ode15s Solve stiff differential equations and DAEs, variable order method. 
(MATLAB 5.2 and higher versions) 

ode23s Solve stiff differential equations, low order method. 
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(MATLAB 5.2 and higher versions) 
ode23t Solve moderately stiff ODEs and DAEs, trapezoidal rule. 

(MATLAB 5.2 and higher versions) 
ode23tb Solve stiff differential equations, low order method. 

(MATLAB 5.2 and higher versions) 
Plot Linear plot. Plot(X,Y) plots vector Y versus vector X. 
Set Set object properties. Set(H,'PropertyName',PropertyValue) sets the 

value of the specified property for the graphics object with handle H. H 
can be a vector of handles, in which case SET sets the properties' values 
for all the objects. 

subplot Create axes in tiled positions. 
Tic Start a stopwatch timer. 
Title Graph title. Title('text') adds text at the top of the current axis. 
Toc Read a stopwatch timer. 
xlabel X-axis label. Xlabel('text') adds text beside the X-axis on the current 

axes. 
Ylabel Y-axis label. Ylabel('text') adds text beside the Y-axis on the current 

axes. 
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PROBLEMS 

1. Develop the energy balance equations. 
 
a) On the bare ground surface, assume 

absorbed radiation is R (J/s/m2), 
out-going heat flux mostly by 
convection is Q (J/s/m2), and heat 
flux into the soil is S (J/s/m2). 

 
b) Heat (E) is stored in the air mass 

in the  greenhouse after 
obtaining heat (Q) from the 
covering surface, S from the 
ground surface, and V by 
ventilation. Units are all (J/s). 

 
 

c) For a single horizontal leaf of area 
A (cm2), assume no heat 
capacity of the leaf and solar 
radiation absorbed is S (W/cm2), 
net long wave radiation 
(effective radiation) on the upper 
side is Ru and that at the lower 
side is Rl (J/cm2/s), heat 
convection from the leaf is Q 
(J/cm2/s), transpiration is q 
(g/cm2/s), and latent heat of 
vaporization is L (J/g).   

 
2. Develop the differential 

equations. 
 

a) Direct solar radiation R 
penetrated into a plant 
canopy follows Lambert- 
Beer's law.  Assuming 
radiation just above the 
canopy is R0 and extinction 
coefficient in the canopy is k, 
describe the penetrated 
radiation rate in terms of the 
depth from the top of the canopy. 

S

E

Q 

V 

Q R

S 

RI 

Ru Q 

q 

A 

S 
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x=0 R0 

R dx 
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b) A coffee cup is filled with water is 

heated by Q (J/s), and the over-all heat 
loss from the cup is L (J/s).  Describe 
temperature increase in the cup.  Assume 
the amount of water in the cup is W (g), 
the heat capacity of water is Cp (J/oC/cm3) 
and its density is 1 (g/cm3). 

 
c) Describe the carbon dioxide 

concentration change in the 
greenhouse, assuming 
outside concentration is Co 
(ppm) and constant, inside is 
C (ppm), no generation from 
soil, consumption by plant 
photosynthesis is P 
(mg/cm2/min), total leaf area 
is A (cm2), greenhouse 
volume is V (m3), and ventilation rate is n (1/h).  Note that 1 mole of carbon 
dioxide (44 g) is equivalent to 22400 cm3 at 0 oC and 1 atm.  More discussion 
on the concentration units, μl/l, ppm, vpm, and μmol/mol is given in 
section 10.5. 

  
3. Write the following differential equations in MATLAB. 
 

a) dy/dt = - A * y  and  yt=0 = B 
b) dy/dt = cos(y)   and  yt=0 = 1 
c) d2x/dt2 = F - A * dx/dt - B * x  and  xt=0 = X0 ; dx/dt t=0 = DX0 
d) Host-parasite or predator-prey model 

               dH/dt = (K1  - K2 * P) * H     and Ht=0 = H0 
                dP/dt = ( - K3 + K4 * H) * P  and Pt=0 = P0 

e) Shells and limpets model 
                dS/dt = K1 * S - K2 * S2 - K3 * L            and St=0 = S0 
                dL/dt = B * K3 * S * L - K4 * L - K5 * L    and Lt=0 = L0 
 
4. Develop MATLAB programs to calculate the following equations and run from 

time t = 0 to 5. 
 

a) Growth curve 
                y = exp (t) 
                dy/dt = y and yt=0 = 1 

b) Decay curve 
                y = 10 * exp ( - 0.1* t ) 
                dy/dt = - 0.1 * y  and  yt=0 = 10 

C P

n 

Co 

Q 

L 
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c) Periodic curve 
                y = 3* sin ( 0.6 * t ) 
                d2y/dt2 = - 0.36 * y  and  dy/dt t=0 = 1.8 ; yt=0 = 0 

d) Response curve 
                y = 1 - exp (- 3 * t ) 
                dy/dt = 3 – 3 * y  and  yt=0 = 0 

e) Rectangular hyperbola (Michaelis-Menten relation) 
                u = k * t / ( K + t ) 
                du/dt = k*K/( K + t )2  and  ut=0 = 0 

f) Logistic curve 
                W = Wi * Wf * exp (Wf * k * t ) /( Wf - Wi + Wi* exp (Wf * k * t)) 
                dW/dt = k* ( Wf - W )* W  and  Wt=0 = Wi 
 
5. Derive that dX1/dt = A * X1 - X2 and dX2/dt = - X1 are equivalent to  
                d2X1/dt2 = A * dX1/dt + X1. 
 
6. Write a MATLAB statement equivalent to eq. 3.3, assuming the initial condition 

of P is A. 
 
7. Modify the program CUC01, assuming the thermal conductivity of soil KS is a 

function of temperature. Use the expression KS = 5.5 + 0.1 * TEMP, where 
TEMP is soil temperature. 

 
8. Derive the system of differential equations from Figure 3.14.  Note: The input 

sine function is given in Figure 3.10b. 
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