
 19

CHAPTER 3

DIGITAL SIMULATION

3.1. INTRODUCTION
Simulation of continuous systems started with the use of analog computers. Analog
computers had been used widely, but they had several disadvantages. Time and
magnitude scaling were cumbersome. Inaccuracies were caused by analog systems,
which cannot separate signal change from noise in principle. There were also
frequent breakdowns in hardware components. With the development of digital
computers in the late 1960's and the growth in capacity of mainframes, digital
simulation became the predominant technique for continuous simulation. In the
1980's, digital simulation spread to mini- and microcomputers. The high speed and
large memory size of microcomputers have enabled us to use almost the same
simulation languages that once were only available on mainframes.

The concept of digital simulation is the same with that used in analog computers.
It is suitable for student lab work since PCs are now available in microcomputer labs
in many schools.

3.2. SYSTEM DYNAMICS
The approach to simulating continuous systems, which is called System Dynamics
has been well-known since it was used to simulate what would happen on the earth.
The results of the simulation were published as "World Dynamics" by J. W.
Forrester (1971) and later as "The Limits to Growth" by his successors such as D. H.
Meadows (1972). The approach itself was developed originally by Forrester, and
the simulation language DYNAMO was invented by him. It can be said that
DYNAMO opened the era of digital simulation. The “World Dynamics” model of
population expansion, energy resource expenditure, and pollution increase on the
earth was so popular that its rather pessimistic predictions astonished public
administrators in many countries in the 1970's. This kind of model cannot predict an
event such as an energy crisis, which is caused politically and is discontinuous;
when a crisis occurred, the rate of consumption of energy resources decreased, and
the whole situation was then reconsidered and modified.

The language DYNAMO is more or less in the form of difference equations and
has not been well used because more friendly languages such as CSMP were
developed soon after. System dynamics is defined as a methodology to analyze
system behaviour including feedback loops. The main applications are for analyses
of social, biological, and ecological processes with many nested feedback loops and
of non-linear systems.

20 CHAPTER 3

3.3. SIMULATION LANGUAGES
Languages are classified into two groups: those for continuous systems and those for
discrete systems. Languages such as GPSS and SIMAN are mainly for discrete
systems; recent versions can handle continuous simulation too (Pegden, 1986),
although all programs for continuous systems are more or less of the nature of
FORTRAN subroutines. On the other hand, a continuous system simulation
language such as ACSL can handle discrete simulation. Therefore, the two groups
are getting closer, although there are still large discrepancies between the two. We
are mostly interested in simulation of continuous systems, and it will be emphasized
here.

Digital simulation languages have been developed to capitalize on the recent
developments in simulation of continuous systems and the advantages of digital
computers. They free us from the disadvantages of both time and magnitude scaling
which were needed on analog computers. They take advantage of the higher
accuracy of each component more than analog computers, and place no actual
limitation on the number of functions used. Popular languages were DYNAMO,
MIMIC, DSL/90, CSMP and CSSL.

The languages were then separated into two groups after transient languages
such as MIMIC were discounted. One was the group represented by CSMP
(Continuous System Modeling Program), developed by IBM, and the other was
CSSL, which was mostly popular in Europe. The basic types of languages have
similar capabilities, but with some differences in expressions. In biological research,
it can be said that CSMP was still more popular than the other languages available
on mainframes. PC versions of this kind of simulation language have been
developed: for example, micro-CSMP (CSMP version for PCs and compatibles),
PCSMP (similar to micro-CSMP with some hardware restriction), ACSL
(Advanced Continuous System Language, an advanced version of CSSL) has much
more flexibility but needs more typing in debugging processes and has hardware
protection), and SYSL (80 - 90% compatibility with CSMP). Micro-CSMP was
chosen as the language in the first edition of this book.

Since then, several new languages have been developed, such as SIMNON,
DYMOLA and Stella. SIMNON is very similar to ACSL and CSMP. On the
other hand, DYMOLA and Stella are called modelling languages and are more or
less object-oriented languages (see Cellier, 1991). They have functions to make a
model and can cooperate with other simulation languages such as ACSL, SIMNON,
MATLAB (SIMULINK) and FORTRAN. Stella and DYMOLA introduce a
relatively large number of functions for particular purposes and their functions
might not be needed for the models in this book. Inputs and outputs are connected
with special symbols. Flow diagrams are the main part of the program instead of
description by equations. An ecological modelling group in the Netherlands that
first developed PCSMP also developed FST(Fortran Simulation Translator). FST
is more or less the same as PCSMP but is much more restricted by the tight
grammar of FORTRAN, such as no mixture of integer and real numbers, than
PCSMP. For example, TO can not be a variable since it is a part of the GO TO
statement of FORTRAN.

 DIGITAL SIMULATION 21

A group of mathematical software has been developed including Mathematica,
MATLAB, Mathcad, and Maple. These types of the software were originally
developed to find formulas and perform mathematical calculations such as on
matrices. MATLAB is linked with SIMULINK, which is a symbolic solver similar
to analog computer techniques and Stella (see Bennett, 1995).

Since the operating system of PCs has changed from DOS to Windows and a
Windows version of micro-CSMP or PCSMP does not exist, a new Windows-
based simulation language is required to accompany the models developed in this
book. MATLAB (SIMULINK), product of MathWorks Inc., USA, is one of the
most successful software packages currently available and is widely used for
mathematical calculations. It is suited for work in control and in simulation as well.
It is a powerful, comprehensive and user-friendly software package for performing
mathematical computations. Equally as impressive are its plotting capabilities for
displaying information. In addition to the core package, referred to as MATLAB,
there are ‘toolboxes’ for several application areas. However, only the core package
is required to solve the models of this book with one example in SIMULINK, one
of the toolboxes.

The concept of any of these languages is based on the analog computer; that is
the same. Once you become familiar with one simulation language, it is much easier
to understand one of the others than to go from FORTRAN to BASIC.

It is clear that language is a tool, and you can make a model in a common
language such as FORTRAN or BASIC. However, it is much easier to make a
model in a simulation language and to understand a model someone else has
developed than in a programming language, because a model in a simulation
language is more like a set of mathematical equations than a list of programs.

3.4. DIGITAL SIMULATION BY CSMP AND MATLAB

3.4.1. Concept of the analog computer

The concept of analog computers is alive in digital simulation. One of the most
important functions on analog computers is integration. Its symbol, shown in Fig.
3.1, is well-known to all engineering students. This figure exactly corresponds to
the hardware configuration on analog computers. If dY/dt (derivative of an arbitrary
function y due to time t is supplied into the operational amplifier whose function is
integration, the original function Y can be obtained through an integrator which is
shown by the integral sign. The minus sign is due to the hardware configuration. If
input and output wires of the amplifier are connected together after the sign is
converted, exp(t) is obtained as the output y. On analog computers you need not
solve the equation. It can be said that the computer solves the differential equation
you supply. In SIMULINK, the integrator is simply replaced by the function
named 1/S, and without an inverter for sign change the same output is obtained.

Using digital simulation languages such as CSMP, the process is similar; that is,
for example, in CSMP a function to integrate according to time (INTGRL) is
available with other functions.

22 CHAPTER 3

Figure 3.1. Diagram of integration on analog computers.

3.4.2. Comparison of CSMP and MATLAB programs with mathematical equations

Simulation of either a linear or a non-linear system, which is time-dependent -- in
other words, dynamic and continuous -- can be done using analog computers.
Simulation using analog computers has the advantage of being equation-oriented.
Analog computers have many functions, such as integration, arbitrary function
generation, and implicit expression.

Plant growth is a good example of non-linear and non-steady-state systems. In
general, plant growth that is continuously changing can be expressed as a system of
differential equations,

dY1(t)/dt = f1 (Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t))
dY2(t)/dt = f2 (Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t))

 .
dYn(t)/dt = fn (Y1(t), Y2(t), . . . , Yn(t), E1(t), E2(t), . . . , Em(t))

where Y1 to Yn are n state variables such as photosynthesis, and leaf and root

weights, E1 to Em are m environmental or boundary conditions such as solar
radiation, temperature and CO2 concentration, and f1 to fn are functional relations
which describe the rate of change of each state variable. With n unknown variables
Y1 to Yn, and n differential equations, unique solutions can be derived numerically.

These equations are expressed in an integral form in CSMP as

Y1(T)=INTGRL(IY1, f1(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T),…,Em(T)))
Y2(T)=INTGRL(IY2, f2(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T),…,Em(T)))
.
Yn(T)=INTGRL(IYn,fn(Y1(T),Y2(T),..,Yn(T),E1(T),E2(T), … ,Em(T)))

where IY1, IY2, . . . , IYn are initial conditions for Y1, Y2, . . . , Yn, respectively,
and we still have n equations for n unknown variables.

IC

∫•

−Y

Y−

Y

-Y

-Y

IC
Y

 DIGITAL SIMULATION 23

Let's consider more details using a concrete expression. Suppose we have a
mathematical expression as follows:

 d2x/dt2 = F - A * dx/dt - B * x

where initial conditions are x(0) = X0, dx(0)/dt = DX0. Then a complete CSMP
program for this is,

 X = INTGRL (X0, DX)
 DX = INTGRL (DX0, F - A * DX - B * X)
 TIMER FINTIM = 10.0, OUTDEL = 0.5, DELT = 0.1
 PRTPLOT X
 END
 STOP

The main point is that the mathematical expression for plant growth is in the
derivative form and the corresponding expression in CSMP is in integral form. The
first two equations in the CSMP program are essential ones. It is not difficult to
understand the correspondence between these two equations and the differential
equation in the mathematical expression, if you notice that the CSMP program has
the same variable DX (dx/dt in the mathematical expression) in the first two
equations and that the first terms in the parentheses of the function
INTGRL(INTeGRaL) are initial conditions.

The mathematical expression can be easily divided into two differential
equations:

 x = ∫ dx/dt (dt)

 dx/dt = ∫ (F - A * dx/dt - B * x) (dt)

TIMER in the CSMP program means time sets for numerical integration.

FINTIM is the finish time, OUTDEL is the time step for the output and DELT is
the time increment for integration. PRTPLOT (PrinT & PLOT) is a kind of output
control, which gives a printout of numerical values as well as a printer plot. TIME
is reserved as a system variable and is incremented by DELT. In CSMP, capital
letters can only be used for expression, except in comments that start with an
asterisk.

In MATLAB, two program files need to be generated to solve the above
problem: A main program and an ODE function subprogram. A semicolon is
required at the end of each command except for comments that start with a percent
sign. As shown in Fig. 3.2, the dimensions of both y0 and dy are 2 rows by 1
column. The dimensions of y0 and dy need to be consistent.

24 CHAPTER 3

% main.m
T0=0; Tfinal=10;
y0=[X0; DX0];
[t,y]=ode23(‘subprg’,[T0 Tfinal],y0);
plot(t,y);

% subprg.m
function dy=subprg(t,y)
X=y(1); % define y1
DX=y(2); % define y2
DIFF_X = DX; % expression 1: dy1/dt
DIFF_DX=F - A * DX - B * X; % expression 2: dy2/dt
dy=[DIFF _X; DIFF _DX]; % dy=[expression 1; expression 2]

Figure 3.2. Structure of MATLAB programs for solving the differential equations.

The biggest advantage in CSMP or MATLAB programs is that the original
equation need not be split into the form the computer can understand, as is always
required in other common languages. Therefore, the program itself becomes very
easily understandable for not only the programmer but also other people.

3.5. MODEL STRUCTURE AND REPRESENTATION

Models are classified into several categories. As we are concentrated into biological
and environmental models, classification based on model structures should be noted.
In order to understand how to make a model, the physical structure is the most
important aspect to be considered. Thus, three main categories, lumped or
distributed models, steady state or dynamic models and linear or non-linear models,
are of primary concern. The CSMP and MATLAB languages are particularly
powerful for solving dynamic non-linear system behaviour. To simplify the model,
lumped models in which one variable is assigned to each object to express an
average are very often used. For example, normally one variable is assigned to the
inside air temperature of a greenhouse. However, if there is a large temperature
gradient in one object, such as the soil layer, more than two variables can be
assigned to the object even if the model is one-dimensional. The soil layer is
divided into several layers, and in each soil layer temperatures are defined separately.
This kind of model is called a distributed model. Air temperature in the greenhouse
can also be divided into separate regions (see section 6.5).

3.5.1. Differential equation

Exponential growth can be expected if the relative growth rate of a living creature is
constant. Let us consider population increase for humans. Assuming constant birth
rate and no mortality, population increase rate is expressed as the product of the
present population and the relative growth rate, that is,

 DIGITAL SIMULATION 25

 dP/dt = BR * P (3.1)

where P is the present population and BR is the birth rate (births/unit time).
If BR is constant, eq. 3.1 is linear and is easily solved analytically. The solution

is P = A*exp (BR * t), assuming the initial condition of P is A. This is programmed
in the following manner by CSMP:

 P = INTGRL(A, BR * P) (3.2)

where INTGRL is one of the powerful functions of CSMP used to integrate the
second argument in the parentheses in terms of time. The initial condition is placed
as the first argument in the same parentheses. The expression can be left as implicit.
The solution of eq. 3.1 is programmed in the following manner in MATLAB:

% main.m
[t,y]=ode23(‘F’, TSPAN, A)
% F.m
function dy=F(t, y)
DIFF_P=BR * y; % define y1=y , expression 1: dy1/dt
dy=[DIFF_P];

where TSPAN = [T0 TFINAL] integrates the system of differential equations y' =
F(t,y) from time T0 to TFINAL with initial condition A. 'F' is the name of an ODE
file.

Numerical integration is carried out in the background of this expression, and
several integration methods are available. Therefore, this one expression is
equivalent to approximately 20 to 50 FORTRAN statements for numerical
integration. Since all calculations are conducted numerically, the system to be
simulated is not necessarily linear.

If we consider death by disease or other reasons, eq. 3.1 can be changed to

 dP/dt = P * (BR - DR) (3.3)

where DR is mortality. This equation means that a small population increase (dP) in
a small time increment (dt) is equal to net increase, the difference between
population inflow (BR * P) and outflow (DR * P).

Sometimes flow charts or diagrams which were originally used for DYNAMO
are used for CSMP and MATLAB, as shown in Fig. 3.3. This figure is the diagram
of eq. 3.3. The population level is express by a rectangular shape. BR and DR are
flow rates, and straight lines show the flow of people. In this figure, it is assumed
that people flow from a kind of source to a kind of sink, both of which are indicated
with cloud-like symbols. Valves can change flow rates in an actual flow, such as
water in pipelines.

The shape of the valve is used to calculate flow rates, BR and DR in the present
case. This kind of flow diagram can be an aid to understanding the program, but
sometimes it is cumbersome, while direct translation from mathematical equations is

26 CHAPTER 3

straight- forward. In the present textbook, therefore, no flow charts or diagrams are
used.

This concept of the relationship between flow and level can be applied to similar
systems such as heat flow and mass flow in the air and in soil.

Figure 3.3. Flow diagram of eq. 3.3.

3.5.2. Description of systems

The important point in the description of systems is that the basic concept of the
model is a flow of something: for example, it can be heat, water vapor or carbon
dioxide in the air. Therefore, the governing rule is conservation of these
components.

Figure 3.4. Energy balance equation.

Population
P

DR

BR

 DIGITAL SIMULATION 27

In Fig. 3.4, energy balance of the soil surface is considered. We are assuming a
hypothetical very thin film soil layer at the surface, which does not have appreciable
volume to store energy in it. Since energy conservation holds here, the summation
of all energy inflow and outflow is zero. In other words, net incoming energy is
equal to net outgoing energy. This is the basic concept of how to build up an
equation to describe a system. Fig. 3.5 shows how to build a differential equation.
Let's assume there is a mass of air or water of which the volume is V, density is r,
and volumetric heat capacity is Cp. Energy Q1 and Q3 are coming in and Q2 is
going out from the mass. Then, the energy change of this mass in dt time is
expressed as dQ/dt, and it is clearly equal to Q1 - Q2 + Q3 (the difference of inflow
and outflow). This energy change can be easily converted to temperature change by
introducing thermal properties of the mass as shown in the figure. This is a basic
differential equation to show the temperature change of the mass.

 Figure 3.5. Differential equation to express an energy balance.

Figure 3.6. Heat flow and temperature regime in the soil layer:
(a). Left: Heat flow, (b). Right: Electric network analogy.

321 QQQ
t
Q

+−=
d
d

)outflowinflow(
t
θρVCp −==

d
d

t
Q

d
d

1Q2Q

3Q

*
TBL

*
T2

*
T1

*
TBU

DZ
DZ

*

*

*

VBL

V2

V1

VBU

C2

C1

R/2

R

R

28 CHAPTER 3

3.5.3. Heat flow and temperature regime in the soil

Heat flow in the soil is complicated because heat flow is associated with water flow.
However, in most cases, it is sufficient to consider heat flow using apparent thermal
conductivity, which includes the effect of water flow. Then heat flow in the soil is
that in a solid body.

Referring to Fig. 3.6a, let us suppose the flat ground is divided into three even
layers in depth and the temperatures at the middle of each layer are T1, T2 and TBL,
respectively. The bottom temperature TBL is a boundary condition and the
temperature at the surface of the ground is TBU.

Referring to this analogy and the scheme in Fig. 3.5, the following equations are
derived, as the temperature increase in the layer in a small time increment is equal to
the total heat flow in the layer considered from the surroundings, in this case the
upper and lower layers:

It is clear from the same figure that an electric passive network system, which is
called π (pi) network, can represent the heat flow in the soil layer (see Fig. 3.6b).

 CS*VS*(dT1/dt) = KS*AS*((TBU-T1)/DZ*2+(T2-T1)/DZ) (3.4)

 CS*VS*(dT2/dt) = KS*AS*((T1-T2)/DZ+(TBL-T2)/DZ) (3.5)

where CS is volumetric heat capacity of the soil, VS is the volume of the soil layer,
AS is the surface area of the soil layer, DZ is the thickness of one layer, KS is the
thermal conductivity of the soil, and t is time. We assumed that heat flows in from
the upper and the lower layers. This is appropriate if we consider properly the signs
involved. If the flow is opposite previously assumed direction, then the sign is
inverted automatically.

These two equations are in the differential form. Again, they can be rearranged
into the integral forms of CSMP (eqs. 3.6a and 3.7a) and the differential forms of
MATLAB (eqs. 3.6b and 3.7b) as shown below:

 T1 = INTGRL(IT1, KS*((TBU - T1)*2.0 + (T2 - T1))/ DZ/DZ/CS) (3.6a)

 T2 = INTGRL(IT2, KS*((T1 - T2) + (TBL - T2))/ DZ/DZ/CS) (3.7a)

 DIFF_T1 = KS*((TBU - T1)*2.0 + (T2 - T1))/ DZ/DZ/CS (3.6b)

 DIFF_T2 = KS*((T1 - T2) + (TBL - T2))/ DZ/DZ/CS (3.7b)

With two unknowns, T1 and T2, and two boundary conditions, TBU and TBL,
the system can be solved.

Let's assume that heat flow in the soil layer shown in Fig. 3.7 is two-dimensional,
with vertical and horizontal flows. Each heat flow is proportional to the temperature
gradient and thermal conductivity and inversely proportional to the distance.

 DIGITAL SIMULATION 29

Figure 3.7. Basic diagram of heat flow in a system.

Suppose each temperature shown in the figure is at the center of a soil block.
Then the differential equation for the system is:

CS * VS * (dT/dt) = KS * (AS * ((TU-T) / DZ + (TB-T) / DZ) +
AF * ((TR-T) / DX + (TL-T) / DX)) (3.8)

where KS is the thermal conductivity of the soil, AS is soil surface area for vertical
heat flow, AF is that for horizontal heat flow, DX is the horizontal distance from
center to center of soil blocks, DZ is the vertical distance from center to center, and
CS is the heat capacity of the center soil block.

The differential form is more common in mathematical expressions, but the
integral form is straightforward for programming in simulation languages.
Therefore, the CSMP and MATLAB expressions for eq. 3.8 are as follows:

T = INTGRL(IT, KS * (((TU - T) + (TB - T)) / DZ / DZ ...
+ ((TR - T) + (TL - T)) / DX / DX) / CS) (3.9a)

DIFF_T = KS * (((TU - T) + (TB - T)) / DZ / DZ + ...
((TR - T) + (TL - T)) / DX / DX) / CS (3.9b)

Model representation is not necessarily explicit. The form of integration always
includes implicit expression, and the function IMPL in CSMP or a similar function
fzero in MATLAB can be used to solve implicit functions except for integrals.
Programming is straightforward and can be a kind of translation of mathematical
equations into the expressions in each language. Therefore, the following several
examples are the best way to understand programming and thus modelling. An
ellipsis (...) indicates that the statement continues to the following line in the CSMP
and MATLAB programs.

DZ

TF

TL TR

TU

TB

Soil Block
T

DZ

DX

AF

AS

VS

CS

T

VS = AS * DZ
 = AF * DX

30 CHAPTER 3

3.6. A MODEL FOR TEMPERATURE REGIMES IN THE SOIL (CUC01)

3.6.1. Model description

Fig. 3.8 shows the Command Window of MATLAB running the cuc01 model. The
user can enter ‘cuc01’ or ‘cuc01(n)’ to run the model, where n is 1 to 4. Entering
‘cuc01’ will have the same result as with ‘cuc01(1)’. Fig. 3.9 shows the result of
the CUC01 model in the Figure Window. Fig. 3.10 shows the scripts of the model,
which consists of a main program (Fig. 3.10a) and a function subprogram (Fig.
3.10b). In the MATLAB program, % denotes that the line is a comment only. The
command ‘function cuc01(trial)’ is the first line of the script, in which ‘cuc01’ is
the name of the function and needs to be consistent with the file name. The variable
‘trial’ contains the number carried into the program. If there is no argument or the
argument value is larger than 4 or smaller than 1, the value of 1 will be assigned to
‘trial’. Based on the ‘trial’ value, the ‘switch…case…end’ provides branching
with various pairs of ks and cs values. The thermal conductivity of the soil, ks
indicates how fast the heat will transfer through the soil, and the heat capacity of the
soil, cs indicates how much heat can be store by the soil. These values are declared
as global variables in the second line of the scripts listed in Fig. 3.10a and Fig. 3.10b.

The matrix variable y0 contains the initial temperatures of T1 to T5. As listed in
Fig. 3.10a, y0 is a 5 by 1 matrix (column vector). The y0 matrix is then fed to the
subprogram ‘soil01.m’ using the ode23() function. The core of the main program of
the CUC01 model lies in the following command: [t, y] = ode23('soil01',[tstart
tfinal],y0);

Several functions can be used in solving simultaneous ordinary differential
equations, including ode23, ode45, ode113, ode15s, ode23s, ode23t and ode23tb.
The major difference among these functions is in the numerical methods used. For
non-stiff differential equations, ode23, ode45 and ode113 can be used. For stiff
differential equations, ode15s or ode23s can be used. More details can be found
from online help of MATLAB; for example, type ‘help ode23’ in the Command
Window followed by the Enter key to learn more about ode23. Some helpful
information is listed in the last section of this Chapter.

The last line of the ‘soil01.m’ subprogram is the dy matrix. The dimensions of
this matrix must be consistent with the y0 matrix listed in ‘cuc01.m’.

 DIGITAL SIMULATION 31

Figure 3.8. Command Window of MATLAB running cuc01 model.

Figure 3.9. Figure Window of MATLAB running cuc01 model.

Results of
 cuc01

Results of
cuc01(2)

Results of
cuc01(3)

32 CHAPTER 3

% Temperature regime in the soil layer CUC01.m
% Boundary condition is surface temperature.
% Function required: soil01.m
%
function cuc01(trial)
global ks cs
if nargin==0 % If no argument
 trial=1; % use 1 as the default.
end
if trial>4 | trial <1 % If argument_value >4 or <1
 trial =1 % use 1 as the default
end
switch trial
case 1
 ks=5.5;cs=2000; % default values
case 2
 ks=11;cs=2000; % ks doubled
case 3
 ks=5.5;cs=4000; % cs doubled
case 4
 ks=11;cs=4000; % ks, cs both doubled
end
% ks: Soil thermal conductivity (kJ/m/C) and ks/3.6 (W/m/C)
% cs: Heat capacity of soil (kJ/m3/C)
%
tstart = 0; tfinal = 48;
y0=[10;10;10;10;10]; % 5x1 matrix for initial conditions.
[t,y] = ode23t('soil01',[tstart tfinal],y0);
% calling function ode23t with constants and eqs. in 'soil01.m'
% with simulated time from tstart to tfinal
% with initial conditions in matrix y0 and
% with calculated answer in matrix y.
%
plot(t,y(:,1),'b^-',t,y(:,2),'gV-',t,y(:,3),'r+-',…

t,y(:,4),'c*-',t,y(:,5),'ko-');
axis([-inf,inf,5,15]);
grid on;
xlabel('time elapsed, hr');
ylabel('Soil temperature, ^oC');
tit=['Given conditions: ks=',num2str(ks),' and cs=', num2str(cs)];
title(tit);
legend('T1','T2','T3','T4','T5',2);
fprintf('\n Running Case %1.0f: given ks=%3.0f and cs=%4.0f. \n\n',…

 trial,ks, cs);
disp(' Please check Figure_Window for simulated results.');
disp(' Totally, 5 curves showing T1, T2, T3, T4 and T5 versus t.');

Figure 3.10a. Main program of model for temperature of soil layers (CUC01.m).

The command ‘plot(t, y(:,1),'b^-',....)’ draw five curves on the Figure Window
as shown in Fig. 3.9. The first and second arguments are the data for the x and y
axes. The length of the matrices t and y(:,m), where m equals 1 to 5, need to be the
same. The third argument is a character string that defines line types, plot symbols
and color to be displayed on the screen. Entering ‘help plot’ in the Command
Window can reveal all the possible combinations as listed below.

 DIGITAL SIMULATION 33

y Yellow . Point - Solid
m Magenta O Circle : Dotted
c Cyan X x-mark -. Dashdot
r Red + Plus -- Dashed
g Green * Star
b Blue s Square
w White d Diamond
k Black v Triangle (down)
 ^ Triangle (up)
 < Triangle (left)
 > Triangle (right)
 p Pentagram
 h Hexagram

The command ‘axis’ allows self-arrangement on both x and y axes. The ‘-inf’

and ‘inf’ stand for no preset lower bound (LB) and upper bound (UB) of this axis.
The first two parameters are for the LB and UB of the x axis and the third and fourth
parameters are for the LB and UB of the y axis, respectively.

There are four commands frequently used after the plot command. Commands
‘xlabel(‘text’)’ and ‘ylabel(‘text’)’ allow the user to assign text to the x and y axes;
commands ‘title(‘text’)’ and ‘legend(‘text1’,’text2’,…,pos)’ allow the user to
assign text to the title of the plot and to the legend, respectively. The last argument
‘pos’ of ‘legend()’ places the legend in the specified location:

 0 = Automatic "best" placement (least conflict with data)
 1 = Upper right-hand corner (default)
 2 = Upper left-hand corner
 3 = Lower left-hand corner
 4 = Lower right-hand corner
 -1 = To the right of the plot

The ‘fprintf(format,a,…)’ command writes formatted data to the screen, and

‘format’ is a string containing C language conversion specifications. Conversion
specifications involve the character %, optional flags, optional width and precision
fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E, g,
G, c, and s. For more details, see the ‘fprintf’ function description in the online
help or refer to a C language manual. The special formats \n,\r,\t,\b,\f can be used to
produce linefeed, carriage return, tab, backspace, and form feed characters
respectively. Use \\ to produce a backslash character and %% to produce the percent
character. The command ‘disp(x)’ can display an array on the screen. If x is a
string of text, the text is displayed. The results of the last three commands of the
script listed in Fig. 3.10a can be found in Fig. 3.8 as indicated by the large ‘}’ sign.

Fig. 3.10b lists the script of ‘soil01.m’. Since the ode function must return a
column vector, dy is the column vector to be returned as listed in the second line

34 CHAPTER 3

from the bottom of Fig. 3.10b. In the script for calculating TF, ‘pi’ is used, and is a
reserve word of MATLAB, representing π. In the subprogram ‘soil01.m’, there
are 5 unknowns, y(1) to y(5) with 5 ordinary differential equations.

% Subprogram to be used with cuc01.m soil01.m
function dy = soil01(t,y)
global ks cs
z=0.1; % Depth of each soil layer (m)
T0=10; % Average outside temperature (C)
TU=5; % Amplitude, temperature variation
TBL=10; % Boundary soil temperature (C)
TF=T0+TU*sin(2*pi/24.*(t-8));
% t is time (in hours)
% TF: Soil temperature of surface layer (C)
% Maximum temperature occurs
% at 2 o'clock in the afternoon
T1=y(1);T2=y(2);T3=y(3);
T4=y(4);T5=y(5);
DIFF_T1=2*(TF-T1)+(T2-T1);
DIFF_T2=(T1-T2)+(T3-T2);
DIFF_T3=(T2-T3)+(T4-T3);
DIFF_T4=(T3-T4)+(T5-T4);
DIFF_T5=(T4-T5)+(TBL-T5)*2;
val=ks/z/z/cs;
dy = [DIFF_T1; DIFF_T2; DIFF_T3; DIFF_T4; DIFF_T5]*val;
% Format of dy should be consistent with y0 in cuc01.m (5x1 matrix)

Figure 3.10b. Subprogram of cuc01 model (soil01.m) and soil diagram.

3.7. APPLICATION TO STEADY STATE MODELS

Once the dynamic model for non-steady-state conditions has been developed, it can
be easily applied to steady-state conditions. For example, if the two boundary
conditions in eqs. 3.4 and 3.5 are constant, the left-hand side of the equations will
become zero after a certain period of time. Then, the temperature gradient would be
linear, and each temperature would be found by interpolation using the physical
properties of the soil layer.

3.8. MORE ON MATLAB

Fig. 3.11 shows ‘cuc01a.m’, which is an expansion of ‘cuc01.m’ with more
MATLAB commands included. The command ‘tic’ starts a stopwatch timer; ‘toc’
reads the stopwatch timer. The execution time required between commands ‘tic’
and ‘toc’ will be displayed on the screen upon the execution of ‘toc’. Note that the
y0 matrix looks different from the one listed in ‘cuc01.m’; however, they are in fact
the same. The y0 listed in Fig. 3.10a is a 5 by 1 matrix (column vector) and the y0
listed in Fig. 3.11 is the transpose matrix of a 1 by 5 matrix. The transpose matrix of
a row vector is again, a column vector.

*
TF

*
*
*
*
**TBL

T1

T2

T3

T4

T5

z
z

z

z

z

z

 DIGITAL SIMULATION 35

The command ‘h1=findobj('tag','Temperature')’ will find the object using
‘Temperature’ as a tag name and assign the handle to the h1 variable. Following by
‘close(h1)’ will close the h1 object, that is the one with ‘Temperature’ as a tag name.
Adding these two commands, prior to the ‘figure()’ command can prevent opening
too many Figure Windows with the ‘Temperature’ tag name if the program is
executed several times.

The command ‘figure()’, by itself, creates a new Figure Window. Many
properties were involved in the Figure Window such as ‘tag’, “Resize’, ‘MenuBar’,
‘Name’, ‘NumberTitle’, ‘Position’, etc. Fig. 3.9 was created without using the
‘figure()’ command and Fig. 3.12 was created with the ‘figure()’ command listed in
the ‘%--[Figure 1]--’ section of the script in Fig. 3.11. Fig. 3.12 has a user-defined
‘Name’, that is the text written at the top of the Figure Window, and also is without
the command menu and icons listed in the second and third rows from the top of Fig.
3.9.

Assigning figure to a handle using the command ‘h=figure(…)’, followed by
‘get(h)’, will generate a list of figure properties and their current values. More
details can be found in online help.

The command ‘h=plot(…..)’ assigns the plotting operation to a handle ‘h’,
allows future manipulation on this plot such as setting the line width, and returns its
handle.

% Temperature regime in the soil layer CUC01a.m
% Boundary condition is surface temperature
% Function required: soil01.m
%
function cuc01a(trial)
global ks cs
if nargin==0 | trial>4 | trial <1, trial =1; end
switch trial
 case 1, ks=5.5; cs=2000;
 case 2, ks=11; cs=2000; % ks doubled
 case 3, ks=5.5; cs=4000; % cs doubled
 case 4, ks=11; cs=4000; % ks, cs both doubled
end
%---[Core]--
tic % start recording time
tstart = 0;tfinal = 48;
IT1=10;IT2=10;IT3=10;IT4=10;IT5=10;
y0 = [10 10 10 10 10]' ; % Transpose of row matrix is column matrix
[t,y] = ode23('soil01',[tstart tfinal],y0);
toc % show elapsed time from tic to toc
%---[Figure1]---
h1=findobj('tag','Temperature'); close(h1);
% prevent from opening too many same figure windows
figure('tag','Temperature','Resize','on','MenuBar','none',...
 'Name','CUC01a.m (Figure 1: Temperatures in 5 soil layers)',...
 'NumberTitle','off','Position',[160,80,520,420]);
h=plot(t,y(:,1),'k-*',t,y(:,2),'b:o',t,y(:,3),'r:^',t,y(:,4), ,...
 'go-',t,y(:,5));
set (h,'linewidth',2); axis([-inf,inf,5,15]);grid on;
xlabel('time elapsed, hr'); ylabel('Soil temperature, ^oC');
legend('T1','T2','T3','T4','T5');

36 CHAPTER 3

%---[Figure2]---
h2=findobj('tag','Temp5');close(h2);
h2=figure('tag','Temp5','Resize','on','MenuBar','none',...
 'Name','CUC01a.m (Figure 2: Temperature in each soil layer)',...
 'NumberTitle','off','Position',[200,40,520,420]);
figure(h2); subplot(5,1,1); plot(t,y(:,1),'k-*'); ylabel('T1');
% draw the 1st plot out of 5 row x 1 col. plots per figure
axis([-inf,inf,5,15]); grid on;
subplot(5,1,2); plot(t,y(:,2),'b:o'); ylabel('T2');
% draw the 2nd plot out of 5 row x 1 col. plots per figure
axis([-inf,inf,5,15]); grid on;
subplot(5,1,3); plot(t,y(:,3),'r:^'); ylabel('T3');
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on;
subplot(5,1,4); plot(t,y(:,4),'go-'); ylabel('T4');
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on;
subplot(5,1,5); plot(t,y(:,5)); ylabel('T5');
xlabel('time elapsed, hr');
axis([-inf,inf,5,15]); set(gca,'ytick',[8 10 12]); grid on;
clc; % clear command window
disp(' Thank you for using CUC01a.'); disp(' ');
disp(' You can enter ''close all'' to close Figure_Windows.');

Figure 3.11. Main program of CUC01a model (CUC01a.m).

Figure 3.12. Figure generated from ‘%--[Figure 1]--' section of cuc01a.m.

 DIGITAL SIMULATION 37

Figure 3.13. Figure generated from ‘%--[Figure 2]--' section of cuc01a.m.

The script listed in the ‘%--[Figure 2]--‘ section of Fig. 3.11 generates Fig. 3.13.
The command ‘figure(h)’ makes h the current figure, forces it to become visible,
and brings it to the foreground, in front of all other figures on the screen. If Figure h
does not exist and h is an integer, a new figure is created with handle h. The
command ‘subplot(m,n,p)’ breaks the Figure Window into an m-by-n matrix of
small axes, and selects the p-th axes for the current plot. The command ‘plot()’
following ‘subplot(…,p)’ draws the plot in the p-th axes. As shown in Fig. 3.13,
there are five subplots in one Figure Window. The last three subplots have different
y ticks compared with the first two subplots. These y ticks of the last three subplots
were generated using the ‘set(gca,’ytick’,[8 10 12])’ command. The term ‘gca’,
representing ‘get handle to current axis’, is a reserve word in MATLAB. Both
‘ytick’ and ‘xtick’ can be assigned by the user with the ‘set(gca,..)’ command. The
command ‘clc’ is used to clear the Command Window.

3.9. SIMULINK

SIMULINK is one of the toolboxes linked with MATLAB and is suitable for
dynamic simulation. It is a kind of graphical approach and is based on the concept
of analog computers as shown in Fig. 3.14. This figure shows the model CUC01 in
SIMULINK. Fig. 3.1 can be a step to understanding this figure. In Fig. 3.14, the
integrator is labeled 1/S, the summers are shown as squares with plus and minus
signs, and the coefficients to be multiplied are in triangles. The construction of the
model is straightforward. The flow is from left to right. There are two boundary
conditions, the soil surface temperature change is given by a sine wave (all
parameters are hidden under each symbol) plus a constant, and the bottom

38 CHAPTER 3

temperature is given as a constant 10. The scope symbol is the output, and any of
the outputs T1 through T5 can be seen through the scope. It is apparent that the first
line components are all for the temperature of the first soil layer, T1. T1 is the
output of the first integrator and is fed back as an input to the summers with a minus
sign. Then, the first boundary condition, the soil surface temperature minus T1 is
one of the two inputs to the next summer. Following this approach, the whole
diagram can be understood.

In this book, models in SIMULINK are not included because of the space
limitations.

Figure 3.14. The model CUC01 in SIMULINK.

 DIGITAL SIMULATION 39

MATLAB FUNCTIONS USED

% Comments.
; Prohibit from display to the monitor.
: Represent a complete row or column of a matrix.
… Continue in next line.
axis Control axis scaling and appearance. Axis([XMIN XMAX YMIN

YMAX]) sets scaling for the x- and y-axes on the current plot.
clc Clear command window.
disp Display array. Disp(X) displays the array, without printing the array

name. In all other ways, the same as leaving the semicolon off an
expression except that empty arrays don't display. If X is a string, the
text is displayed.

figure Creates a new figure window, and returns its handle.
findobj Find objects with specified property values.
fprintf Write formatted data to screen.
global Define global variable.
grid Grid lines. Grid on adds grid lines to the current axis. Grid off takes

them off. Grid , by itself, toggles the grid state of the current axis.
gca Get handle with Current Axis.
legend Graph legend. Legend(string1,string2,string3, ...) puts a legend on the

current plot using the specified strings as labels. Legend(...,Pos) places
the legend in the specified location:
 0 = Automatic "best" placement (least conflict with data)
 1 = Upper right-hand corner (default)
 2 = Upper left-hand corner
 3 = Lower left-hand corner
 4 = Lower right-hand corner
 -1 = To the right of the plot

num2str Convert number to string.
ode23 Solve non-stiff differential equations, low order method.

(MATLAB 4 and higher versions)
[T, Y] = ode23('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates
the system of differential equations y' = F(T,Y) from time T0 to
TFINAL with initial conditions Y0. 'F' is a string containing the name of
an ODE file. Function F(T, Y) must return a column vector. Each row in
solution array Y corresponds to a time returned in column vector T.

ode45 Solve non-stiff differential equations, medium order method.
(MATLAB 4 and higher versions)

ode113 Solve non-stiff differential equations, variable order method.
(MATLAB 5 and higher versions)

ode15s Solve stiff differential equations and DAEs, variable order method.
(MATLAB 5.2 and higher versions)

ode23s Solve stiff differential equations, low order method.

40 CHAPTER 3

(MATLAB 5.2 and higher versions)
ode23t Solve moderately stiff ODEs and DAEs, trapezoidal rule.

(MATLAB 5.2 and higher versions)
ode23tb Solve stiff differential equations, low order method.

(MATLAB 5.2 and higher versions)
Plot Linear plot. Plot(X,Y) plots vector Y versus vector X.
Set Set object properties. Set(H,'PropertyName',PropertyValue) sets the

value of the specified property for the graphics object with handle H. H
can be a vector of handles, in which case SET sets the properties' values
for all the objects.

subplot Create axes in tiled positions.
Tic Start a stopwatch timer.
Title Graph title. Title('text') adds text at the top of the current axis.
Toc Read a stopwatch timer.
xlabel X-axis label. Xlabel('text') adds text beside the X-axis on the current

axes.
Ylabel Y-axis label. Ylabel('text') adds text beside the Y-axis on the current

axes.

 DIGITAL SIMULATION 41

PROBLEMS

1. Develop the energy balance equations.

a) On the bare ground surface, assume

absorbed radiation is R (J/s/m2),
out-going heat flux mostly by
convection is Q (J/s/m2), and heat
flux into the soil is S (J/s/m2).

b) Heat (E) is stored in the air mass

in the greenhouse after
obtaining heat (Q) from the
covering surface, S from the
ground surface, and V by
ventilation. Units are all (J/s).

c) For a single horizontal leaf of area
A (cm2), assume no heat
capacity of the leaf and solar
radiation absorbed is S (W/cm2),
net long wave radiation
(effective radiation) on the upper
side is Ru and that at the lower
side is Rl (J/cm2/s), heat
convection from the leaf is Q
(J/cm2/s), transpiration is q
(g/cm2/s), and latent heat of
vaporization is L (J/g).

2. Develop the differential

equations.

a) Direct solar radiation R
penetrated into a plant
canopy follows Lambert-
Beer's law. Assuming
radiation just above the
canopy is R0 and extinction
coefficient in the canopy is k,
describe the penetrated
radiation rate in terms of the
depth from the top of the canopy.

S

E

Q

V

Q R

S

RI

Ru Q

q

A

S

x

x=0 R0

R dx

42 CHAPTER 3

b) A coffee cup is filled with water is

heated by Q (J/s), and the over-all heat
loss from the cup is L (J/s). Describe
temperature increase in the cup. Assume
the amount of water in the cup is W (g),
the heat capacity of water is Cp (J/oC/cm3)
and its density is 1 (g/cm3).

c) Describe the carbon dioxide

concentration change in the
greenhouse, assuming
outside concentration is Co
(ppm) and constant, inside is
C (ppm), no generation from
soil, consumption by plant
photosynthesis is P
(mg/cm2/min), total leaf area
is A (cm2), greenhouse
volume is V (m3), and ventilation rate is n (1/h). Note that 1 mole of carbon
dioxide (44 g) is equivalent to 22400 cm3 at 0 oC and 1 atm. More discussion
on the concentration units, μl/l, ppm, vpm, and μmol/mol is given in
section 10.5.

3. Write the following differential equations in MATLAB.

a) dy/dt = - A * y and yt=0 = B
b) dy/dt = cos(y) and yt=0 = 1
c) d2x/dt2 = F - A * dx/dt - B * x and xt=0 = X0 ; dx/dt t=0 = DX0
d) Host-parasite or predator-prey model

 dH/dt = (K1 - K2 * P) * H and Ht=0 = H0
 dP/dt = (- K3 + K4 * H) * P and Pt=0 = P0

e) Shells and limpets model
 dS/dt = K1 * S - K2 * S2 - K3 * L and St=0 = S0
 dL/dt = B * K3 * S * L - K4 * L - K5 * L and Lt=0 = L0

4. Develop MATLAB programs to calculate the following equations and run from

time t = 0 to 5.

a) Growth curve
 y = exp (t)
 dy/dt = y and yt=0 = 1

b) Decay curve
 y = 10 * exp (- 0.1* t)
 dy/dt = - 0.1 * y and yt=0 = 10

C P

n

Co

Q

L

 DIGITAL SIMULATION 43

c) Periodic curve
 y = 3* sin (0.6 * t)
 d2y/dt2 = - 0.36 * y and dy/dt t=0 = 1.8 ; yt=0 = 0

d) Response curve
 y = 1 - exp (- 3 * t)
 dy/dt = 3 – 3 * y and yt=0 = 0

e) Rectangular hyperbola (Michaelis-Menten relation)
 u = k * t / (K + t)
 du/dt = k*K/(K + t)2 and ut=0 = 0

f) Logistic curve
 W = Wi * Wf * exp (Wf * k * t) /(Wf - Wi + Wi* exp (Wf * k * t))
 dW/dt = k* (Wf - W)* W and Wt=0 = Wi

5. Derive that dX1/dt = A * X1 - X2 and dX2/dt = - X1 are equivalent to
 d2X1/dt2 = A * dX1/dt + X1.

6. Write a MATLAB statement equivalent to eq. 3.3, assuming the initial condition

of P is A.

7. Modify the program CUC01, assuming the thermal conductivity of soil KS is a

function of temperature. Use the expression KS = 5.5 + 0.1 * TEMP, where
TEMP is soil temperature.

8. Derive the system of differential equations from Figure 3.14. Note: The input

sine function is given in Figure 3.10b.

44 CHAPTER 3

